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Abstract

In this work, I present a new matrix-based model for biological stage-structured populations (SSPs) that

greatly improves the characterisation of variation in development times by tracking individual histories within

each stage. Neglecting such heterogeneity has historically limited the realism and predictive performance of most

SSP modelling approaches. The key idea of the new model is to augment a classic Lefkovitch matrix with stage-

specific integral projection models (IPMs) that track within-stage dynamics.

This new “integral projection Lefkovitch matrix” (IPLM) model drastically reduces stage-duration errors;

is robust to stage distribution instabilities arising from perturbations; permits parsimonious parameterisation

with random variables or time-varying covariates; and can be fitted, even when within-stage development is

unmeasurable, using developmental cohort data. By using maturation-time (and not size) data, our methods

greatly improve the precision of stage-structured IPMs whenever size is a poor, or unavailable, predictor of

stage duration. This scenario is ubiquitous in ecology: egg (e.g. fish, bird, insects) and exoskeleton (e.g.

Ecdysozoa) dimensions often remain relatively constant, and more appropriate developmental metrics can be too

expensive or difficult to collect routinely. Furthermore, by incorporating a combination of laboratory and field

data, Bayesian methods permit the estimation of cryptic parameters in natura, such as the strength of regulatory

density-dependent mechanisms or environmental stochasticity in vital rates. Thus, by assimilating time series data

– even of incomplete life-cycles – IPLMs permit upscaling from the laboratory to the field.

Initially, the identifiability of IPLM parameters is studied with simulated data from marked cohort studies

where individual qualities correlate maturation-times. Results demonstrate that accurate sojourn-time distributions

are reproduced even from small samples. Next, a temperature-dependent model is fitted to Culicoides (biting

midge) unmarked laboratory cohort data to assess the relative role of transient and asymptotic dynamics in

constant and seasonal climates. Results demonstrate that the traditional negligence of individual developmental

heterogeneity affects asymptotic dynamic metrics in various ways and greatly underestimates the importance (both

amplitude and duration) of transient dynamics.

Three applications/extensions of the Culicoides IPLM are studied. First, the fitted model is used to assess the

validity and robustness of linearity assumptions of classic degree-day insect development models. Results show
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that linearity only provides a robust developmental model over extremely narrow temperature intervals. Secondly,

projections of adult densities are used to assess transient and asymptotic dynamics in the basic reproduction ratio

(R0) of bluetongue following the initialisation of a hypothetical adulticide-based vector control program. Results

show that R0 drops suddenly following a reduction in adult survival. But this is only a transitory effect when the

vector population growth rate is not brought below one. Whether or not, and for how long, a given adulticide can

maintain R0 < 1 is temperature dependent, a result that has implications for integrated vector management.

Finally, the Culicoides IPLM is used to construct a state-space model (SSM) for analysing typical multi-

annual time series data from vector abundance studies. With simulated time-series of weekly adult flight-trap

data, the SSM is used to explore the identifiability of key cryptic parameters in natura, including the level of

environmental stochasticity in mortality; the strength of density dependent mortality among larvae; the initial

population density; and the expected efficiency of flight-traps. Results show that when flight-trap efficiency

is known, the parameters are identifiable to a high level of precision using simulated weekly trap counts over

three years. However, when trying to estimate flight-trap efficiency, a very strong correlation with the density-

dependence parameter is detected, suggesting that additional data sources are required to calibrate the model for

epidemiological purposes.

Applications for many state-structured populations - particularly those where cryptic developmental status has

to date prevented study with IPMs - are foreseen in fields including ecological forecasting, mechanistic niche

modelling, demographic compensation studies or eco-evolutionary analysis. Diverse applications are expected for

conservation, agricultural, epidemiological or theoretical purposes.
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Chapter 1

Introduction

1.1 Framework and motivations

The transition between the second and third millenium has been characterised by the intensification of international

trade and travel, and strong interrelations between economies worldwide. This interconnected world has brought

new threats for humanity, among which the risk of emerging or resurgent vector-borne (VB) pathogens has become

a global issue (Gubler, 2002b; Daszak et al., 2000; Anderson et al., 2004; Haines et al., 2006; Jones et al., 2008;

Murray and Daszak, 2013; Watts et al., 2015; Young et al., 2016).

Vector-borne pathogens represent a public health issue. Most emergent VB human diseases are zoonoses, i.e.

pathogens that can be transmitted between vertebrate animals and humans. Examples of human, zoonotic and

animal diseases of major concern in France are shown in tables 1.1 and 1.2. In agriculture, VB diseases affecting

both animals and plants are not only responsible for huge economic losses worldwide, they also exert considerable

societal pressure by disrupting food production systems at local, regional and international levels, and negatively

affect the livelihoods of vulnerable farmers (Battisti and Naylor, 2009; Godfray et al., 2010; Keesing et al., 2010;

Chakraborty and Newton, 2011; Wheeler and Von Braun, 2013; Lipper et al., 2014).

The dramatic resurgence and spread of some well known VB diseases which had historically been stably

bounded to specific regions (e.g. dengue, chikungunya, zika, yellow fever or Lyme disease for humans; bluetongue

virus and heartwater for animals, and blackheart or sharka disease for plants), has been associated to changes in

a variety of factors affecting the epidemiology of VB diseases. Which, to what extent, and how, every one of

these factors shape the transmission of VB pathogens, is a matter of constant research and debate, although there

4
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is a general agreement that most of these modifications are anthropogenically induced, such as changes in host

distributions or movements, socio-economy, land use, animal health systems, or climate (Taylor et al., 2001;

Gubler, 2002a; Purse et al., 2005; Chevalier et al., 2010; Mills et al., 2010).

Many pathogens causing VB diseases (e.g. viruses, bacteria, nematodes or other parasites,) are transmitted

among humans, animals and plants by the bites of infected arthropods such as mosquitoes, ticks, aphids, mites,

triatomine bugs or leafhoppers, among others (Beaty et al., 1996; Cardinale et al., 2003; Alekseev, 2004; Harris and

Maramorosch, 2014). Empirical evidence of climate change affecting the distributions of many species, including

arthropod vectors and the pathogens they vector, has been published profusely in recent years. For example, global

warming has been related to shifts in the distribution of insects and other wildlife across latitudinal and elevation

gradients (Parmesan and Yohe, 2003; Franco et al., 2006; Hickling et al., 2006; Hill et al., 2011).

Arthropds, like many other organisms, are poikilothermic ectotherms (i.e. cold-blooded, therefore sensitive

to temperature changes) and progress through a series of discrete life stages, each of which is associated with

a distribution of maturation times that can vary as a function of environmental conditions. In general, for these

populations, describing how each stage’s vital rates vary with genetic and environmental factors provides a basis

for studying their dynamics (Manly, 1990). With increasing confirmation of anthropogenically induced change

in climatic patterns, it has become urgent to understand how this can affect both ecological (e.g. phenology,

abundance) and evolutionary (e.g. fitness) aspects of these populations’ dynamics.

Development through a life stage takes time, a time that always varies between individuals. Such variation

on individual performance is an intrinsic aspect of populations, and can arise from several biotic (e.g. genetic

or density-dependence) and abiotic (e.g. environmental) mechanisms (Randolph, 1997). However, perhaps

for practical or cultural reasons, most predictive models for stage-structured populations have typically either

disregarded individual heterogeneity and the variance in development time, or the way it has been incorporated

has lacked realism regarding the relationships between biotic/abiotic factors and developmental time distributions

(De Valpine et al., 2014; Vindenes and Langangen, 2015).

Despite a growing literature on the ecological consequences of variation in individual-level traits, we still lack a

general framework with computational methods for the estimation of stage duration distributions and stage-specific

mortalities in fluctuating environments (Hoeting et al., 2003; Murtaugh et al., 2012; De Valpine et al., 2014). The

improved realism of such a framework would facilitate studying the mechanisms by which various factors influence
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ecological dynamics, i.e. it would help determine when, and to what extent, individual heterogeneity will affect

both the long-term and transient dynamics of populations.

This thesis was motivated by initiatives to further develop the current predictive framework for biological stage-

structured populations. Specifically, our aim has been to develop a predictive framework that incorporates within-

stage developmental variation; is flexible enough to include complexities encountered by natural populations such

as time-varying covariates, density-dependence or environmental stochasticity; and enables the use of different

types of data for estimation, inference and simulation.

For this, we have developed a matrix-based model that, unlike other matrix-models, incorporates within-stage

dynamics. This is done using integral projection models (IPMs, Easterling et al. (2000b)). The novelty in this

approach is that (i) a hidden-state enables the tracking of within-stage developmental variation via a parsimonious

stage-specific parameterisation; (ii) the projection of within-stage dynamics permits likelihood-based model fitting

with developmental data at either/both the individual or cohort level; and (iii) within-stage IPMs greatly facilitate

realistic incorporation of various complexities such as time-varying covariates, density-dependence, and both

endogenous and exogenous stochasticity.

In this thesis, I present, for the first time, this new class of augmented matrix model (chapter 2). I test

parameter identifiability with simulated data (chapter 2) and parameterise a temperature-dependent IPLM model

for Culicoides biting midges using laboratory data (chapter 3). The fitted model is then used to (i) analyse

the robustness of the linearity assumptions of classic degree-day development models (section 3.6); (ii) make

inferences regarding the evolution of bluetongue’s basic reproduction ratio, R0, over the course of a hypothetical

adulticide-based control program (chapter 4, section 4.1). Finally, I investigate the use of a modern method –

synthetic likelihood – for making inference from typical time series data from vector density studies (chapter 4,

section 4.2).

In the remainder of this chapter, several topics are visited in order to give a general overview of the most

relevant methodological aspects that sustained this thesis. More precisely, a brief state of the art of biological

stage-structured models and estimation methods is presented. We conclude the chapter by listing the aims of this

work.
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Table 1.1. Main vector-borne human diseases and zoonoses in France and French overseas territories.

Human Diseases and Zoonoses
Disease Vector Reservoir Distribution Status Morbidity Incidence Fatality Trends
Dengue Ae. aegypti Ae.

albopictus
Human,
vectors

French Caribbean
& American Departments,
Reunion, Mayotte, Pacific

Endemo-
epidemic

High High Yes, if different
serotypes are in
circulation

Expansion

Chikungunya Ae. aegypti
Ae. albopictus

Human,
monkey,
vectors

Reunion, Mayotte, French
Caribbean & American
Departments, Pacific,
metropolitan France,

Epidemic High High Low Recurrent
epidemics each
10-20 years

Toscana
virus
infection

Phlebotominae
(sandfly)

Human,
vectors

Mediterranean rim Endemic Moderate Low Zero Stable but better
recognized

Malaria Anopheles Human French Guiana,
Mayotte. Potential: French
Caribbean & American
Departments, Reunion,
Corsica

Endemo-
epidemic

High High High for
P. falciparum
5-10
deaths/year

Tending to
decrease in
French Guiana &
Mayotte

Bartonella
quintana
infection

Body lice Human Cosmopolitan Endemic High High Yes Expansion
among homeless
and deprived
people

Lymphatic
filiariasis

Aedes,
Anopheles,
Culex

Human Mayotte, French Polynesia,
Wallis-and-Futuna

Endemic Potentially
high

Low No In regression

West Nile
virus
infection

Culex Birds All continents including
Europe,
Mediterranean rim
Guadeloupe.

Endemo-
epidemic

Potentially
high

Low High if
encephalitis
develops

Expansion in
North America

Lyme
borreliosis

Tick: Ixodes
ricinus

Rodents,
red deer,
roe deer,
vector

Metropolitan France
(not South-East France)

Endemic High High Very low Expansion

Tick borne
rickettsiosis

Tick Vectors Varies with type of
rickettsiosis, (mainly
South-East France)

Endemic High Moderate Limited Possible
expansion

Rift Valley
fever

Culex, Aedes Ruminant,
vectors

Indian Ocean, Mayotte Endemic-
epidemic

High Documentation
under way in
Mayotte

Low Expansion

Leishmaniiasis Phebotominae
(sandfly)

Dogs,
sylvatic
reservoirs

Metropolitan France,
French Guiana, Martinique

Endemic High Low Potential in
visceral form

Expansion in
French Guiana.
Climate change
influence in
metropolitan
France?

Chagas
disease

Reduviid Wild
mammals

French Guiana Endemic High Uncertain High Expansion

Yellow fever Ae. aegypti Monkeys,
vector

French Guiana Isolated
cases

High Low High Disappearing
with
vaccination

Adapted from Fontenille et al. (2013).
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Table 1.2. Main vector-borne animal diseases in France and French overseas territories.

Animal Diseases
Disease Vector Reservoir Distribution Status Morbidity Incidence Fatality Trends
Bluetongue Culicoides

midges
Bovines,
ovines

Metropolitan
France and
overseas territories

Endemic
(overseas
territories),
Epidemic
(Metropolitan
France)

Limited in
overseas
territories,
high in
metropolitan
France

High Moderate
(ovines) to low
(bovines)

Emerging in
metropolitan
France, serious
economic effects

Piraplasmosis,
anaplasmosis

Ticks Vectors,
bovines,
equines,
dogs

Metropolitan
France,
territories

Endemic Moderate High Moderate Stable

Heartwater Tick:
Amblyomma
variegatum

Ruminants Guadeloupe Endemic High High Low to High Risk of spread in
Caribbean

Trypanosomiasis Tabanids,
stomoxes

Ruminants,
equines

French Guiana Endemic Reduced
economic
value

High Low to high Stable (French
Guiana), foci in
metropolitan
France

Besnoitiosis Mechanical
transmission
(Tabanids,
stomoxes,
Hyppoboscidae)

Felids,
bovines

Outbreak in
metropolitan France

Endemic Loss of
economic
value

Apparently
pseudo-
contagious

Death or loss
of economic
value

Renewed upsurge
in metropolitan
France

Equine
infectious
anaemia

Mechanical
transmission
(Tabanids,
stomoxes)

Equids Outbreaks in
metropolitan
France, French
Guiana

Endemic Moderate Low Low Regression

Adapted from Fontenille et al. (2013).

1.2 Within-stage developmental variantion in single-species models

Many classic models of population dynamics typically neglect individual level characteristics and simply attempt to

describe how a scalar density,N , evolves in time (Verhulst, 1838; Malthus, 1852; McKendrick and Pai, 1912; Pearl

and Reed, 1920; Lotka, 1925). However, vital rates (growth, mortality, fecundity) are rarely constant throughout a

population, and structured population models attempt to stratify, or “structure”, a population into sub-populations

who’s vital rates show greater homogeneity. A classic example are the age-structured models which date to

Leslie (1945). A similar class of models are the stage-structured models (SSMs) (Lefkovitch, 1965) that describe

populations that develop via a discrete set of stages. For example, SSMs have been used in plants (Crone et al.,

2013) and many taxa such as terrestrial and marine mammals (Ozgul et al., 2009; Fujiwara and Caswell, 2001);

fish (Pertierra et al., 1997); birds (Blackwell et al. 2007); amphibians (Biek et al., 2002) and arthropods (Coll et al.,

2012). The same conceptual framework is also used in other systems where “stage” can describe diverse features

including habitat types (Horvitz and Schemske, 1995); animal location (Hunter and Caswell, 2005); health status

(Shulgin et al., 1998); patch occupancy (Hanski, 1994) and metapopulation or metacommunity status (Johnson,

2000).

Our focus here is on stage-structured models, and more particularly in (i) the implications of assumptions
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regarding variance in stage durations and the processes that generate that variation; and (ii) how mechanistic

models which generate this variance more realistically can be parameterised using available (or easily obtainable)

data sets.

There has been a fair amount of work on modeling single-species populations with multiple stages, including

discrete, continuous and stochastic models (Cushing et al., 2002; Caswell, 2006; Yamanaka et al., 2012; De Valpine

et al., 2014). At least four general classes of SSMs can be distinguished that make different assumptions regarding

within-stage variation, namely differential equations, matrix population models, stage-duration distribution

models, and integral projection models. Below I describe each of these approaches with particular attention paid

to their limitations regarding characterising the variance of stage durations.

1.2.1 Differential equations

Systems of differential equations group individuals in stages characterised by a common set of vital rates (e.g.

development, survival and reproduction). Although facilitating the treatment of non-linear dynamics (in general,

non-linear feedbacks are incorporated via vital rates such as birth or mortality rates), standard differential equations

do not handle the delays imposed by stage-specific maturation times or any associated sources of variance. Both

maturation times and variance are well known to affect population dynamics and long-term trajectories (Blythe

et al., 1984; Wearing et al., 2004; Clutton-Brock and Sheldon, 2010). Yet, systems of ordinary differential

equations (ODEs) typically generate exponential sojourn-time (i.e. development time) distributions which can

provide a poor level of realism. In systems of ODEs this can be somewhat addressed by adding sub-compartments

to obtain Erlang distributed sojourn-times (Keeling and Rohani, 2008; King et al., 2008). However, the approach

lacks of the flexibility and generality to provide a realistic model when vital rates (and stage-duration distributions)

are sensitive to environmental fluctuations. Attempts to overcome such limitations have been addressed by models

including delays and stochasticity.

Delays can be incorporated into systems of differential equations to characterise stage-duration arising from

maturation in processes. For an ordinary delay differential equation (DDE), for example, the general expression

is dN(t)
dt = f(N(t), N(t − T )), where N(t) represents the population (or sub-population of a given stage) at

time t, f(N(t), N(t − T )) is a function describing growth, recruitment and mortality, and T > 0 is the delay

parameter (Manetsch, 1976; Blythe et al., 1984; Nisbet et al., 1985; MacDonald, 1986; Aiello and Freedman,
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1990; Kuang, 1993; Nisbet, 1997; Eurich et al., 2005). In the simplest examples, individuals are assumed born at

the same (initial) time and delay is fixed, thus mean stage-duration is well represented but variance is neglected.

Alternatively, delays can be distributed according to some probability distribution that can be parameterised

with covariates, but this approach neglects the processes that generate delays, and specifies that delays are pre-

determined at a set point in time and cannot vary thereafter as a function of covariates. For insects in fluctuating

environments, this is a large simplification that lacks realism and generality.

Delays have been included as dynamic variables of either food availability or temperature. In some of these

cases, unrealistic assumptions (such as fixed duration for egg or adult state) have been made to simplify model

analysis, hampering practical applications (Nisbet and Gurney, 1983; Nisbet, 1997). In some cases, temporal

fluctuations (i.e. environmental or demographic stochasticity) are included (Frank and Beek, 2001; Mao et al.,

2005; Chen et al., 2005; Cavalerie et al., 2015; Wood, 2010). A small number of studies have incorporated stage-

structured time series data for inference. In such cases, independently estimated fixed parameters are generally

used to maintain parsimony (Severini et al., 2003; Wood, 2010; Yamanaka et al., 2012).

A general drawback of DDE models is they do not realistically account for sources of variance, which can

lead to unrealistic projections. This limitation has been explored with time-distributed delays, in general from

a theoretical/numerical perspective with limited applicability (Cooke and Grossman, 1982; MacDonald, 1986;

Eurich et al., 2005). In Nelson et al. (2013), integral delay-differential equations parameterised with individual-

scale laboratory data enable studying dominant patterns of an exceptional 51-year time series of an insect (tea

tortrix) population. Although a promising approach, their methods do not enable estimation parameters with field

data.

1.2.2 Stage-duration distribution models

Transitions among life stages can be characterised by the distribution of time spent in each stage. This is the

approach adopted by stage-duration distribution models (SDDMs) – a statistical approach that accommodates

naturally the variation typically reported in development data. This class of models, also known as “survival

analysis models” or “failure time models”, have been developed in other fields for similar data, such as time to

machine failure, competing risk models, disease onset, or time to death (Lindsey and Ryan, 1998; Wong et al.,

2005; Kalbfleisch and Prentice, 2011).
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Models of stage-duration distribution (SDD) assume individual stage-durations are distributed according to a

parametric family of densities, including including Erlang, gamma, Weibull, log-normal, logistic, inverse Gaussian

and others (Read and Ashford, 1968; Bellows Jr and Birley, 1981; Dennis et al., 1986; Breteler et al., 1994; Hoeting

et al., 2003; Knape et al., 2014). In this way, SSDMs integrate readily the effects of individual developmental

variation and can be fitted to survival data for statistical comparison.

This approach has been used to model the temporal progression of multistage systems by integrating to matrix-

like forms (De Valpine, 2009) or cohort-based developmental models with stochastic process (Dennis et al.,

1986). The approach has been used to estimate mortality and correlated SDDs (via Gaussian copulas) in stable

environments (De Valpine, 2009; Knape et al., 2014; De Valpine and Knape, 2015), and to compare phenology

between populations (Murtaugh et al., 2012).

Common limitations of SDDMs include a shared distribution parameter or fixed variance across all stages

(Read and Ashford, 1968; Hoeting et al., 2003; Manly, 1990; Aubry et al., 2010), or a poor treatment of mortality:

either assumed constant through all stages or just neglected (Hoeting et al., 2003). Also, the fact that in data

from unmarked individuals in distinct cohorts the same individuals are repeatedly assessed introduces a non-

independence that is rarely incorporated to the models (Gouno et al., 2011; Knape et al., 2014).

This lack of flexibility (for example, mortality assumptions and estimation methods are highly conditioned on

whether data is of marked or unmarked individuals) explains that SDDMs are often based on purely empirical

methods, do not handle time-varying parameters easily, and focus on estimation without reference to a wealth of

knowledge. Thus, the ability of SDDMs to represent dynamical processes is strongly limited. Although SDDMs

permit simulation of individual-based models (Dennis et al., 1986; Régnière and Powell, 2013), the unrealistic link

with time-varying parameters and heavy computational demands prevent such approaches gaining popularity for

ecological studies in natura.

1.2.3 Matrix population models

Matrix population models (MPMs) are probably the most popular empirical tool to describe the life-cycles of

structured populations. In matrix models, individuals are grouped according to a discrete range of states, and

transition probabilities define the dynamics. Popular states used to characterise population are age (Leslie matrices,

Leslie (1945, 1948)) and discrete developmental stages such as egg, larva, adult, among others, (Lefkovitch
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matrices, Lefkovitch (1965)). Although popular in demographic studies, a clear limitation of Leslie models is

that the dynamics of many populations is not well described by chronological time, that discretising age can be

quite arbitrary and that sensitivities and elasticities are influenced by the choice of discretisation.

Many other structures are also used to define populations by matrix methods. These can include sex, genetic

aspect, physiology, developmental status, health status, among others (Caswell, 2006).

For any MPM, a population vector N is projected forward via a transition matrix M by a single time step t.

Thus at any t, Nt+1 = MNt, with N0 the starting population vector. Elements of M describe the probability of

transition between stages (i.e. development and survival), and individual contributions to newborns (fecundity),

which are the key processes underlying most life-cycles ( Fig. 1.1).

Figure 1.1. A typical life-cycle graph (left) and the corresponding projection matrix, M , of the population (right). Elements bi and wi
describe transition probabilities of stage i, and 1− (bi + wi) is the associated mortality probability. Elements fi account for expected

fecundity.

Long-established analytical methods exist to evaluate MPM and provide number of metrics that describe

elements of the population dynamics. These include metrics of aspects of long-term dynamics (growth rate and

stable distributions) (Caswell, 2006); and short-term or transient dynamics, which become especially important

under fluctuating environments (Koons et al., 2005; Tenhumberg et al., 2009; Stott et al., 2011, 2012). Moreover,

techniques for studying the sensitivity of these metrics to changes in vital rates are well known (Cushing et al.,

2002; Caswell, 2006).

Analysis and simulation with MPMs has featured numerous levels of biological complexity including density-

dependence, dispersal and time-varying parameters (Van Tienderen, 1995; Cushing et al., 2002; Caswell, 2006).

Detailed discussion can be found in Cushing et al. (2002) and Caswell (2006). In all cases, the basic matrix M is

adapted to account for one or various model assumptions. For example, density-dependence can be incorporated

by making at least one element of M a function of at least one element of N . This “trick” is often employed in
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ecological modelling to avoid undesirable linear dynamic behaviour (i.e. populations can only explode or crash)

of density-independent models. Matrix elements can also be parameterised in terms of explanatory variables

allowing environmental or climatic dependence to be introduced. Similarly, stochastic effects can be introduced

by perturbing some of the matrix elements by some suitably generated random numbers.

Standard MPMs rely on a Markov process assumption at the between-stage level – in other words, the

probability of making the transition from one stage to another does not depend on how long an individual has been

in any given stage since the model has no memory of the history of each individual within each stage. The Markov

assumption produces geometric distributions for within-stage maturation times, implying that the most common

stage duration for an individual is just one time step. This is a quite unrealistic assumption, giving place to poor

approximations of stage-duration distributions and unrealistic projections of dynamics under natural conditions

(Lefkovitch, 1965; Tuljapurkar et al., 2009; Salguero-Gomez and Plotkin, 2010; Bolnick et al., 2011; De Valpine

et al., 2014; Vindenes and Langangen, 2015). Even more, it is well known that the distributions of stage-duration

impact population growth rate, sensitivities and elasticities (Caswell, 1983; Birt et al., 2009; De Valpine, 2009),

and that associated projections are only valid when stage distributions are stable. But, surprisingly, this reliance

on the Markov assumption is quite ubiquitous in biological applications of MPMs.

Perhaps the simplest proposed solution to minimise errors arising from this approximation is to find an optimal

time step ∆t that minimises this bias (Cushing et al., 2002). However, this approach is unlikely to work when

maturation times differ greatly among stages or across time. Another commonly proposed solution is to split a

compartments into r sub-compartments. This does pose the question of how to choose r since it is essentially a

shape parameter of the stage-duration distribution. This has been the approach underlying age-size (Longstaff,

1984; Law, 1983; Schaalje and van der Vaart, 1989; Zuidema et al., 2009) or stage-duration-age structured matrix

models (Plant and Wilson, 1986; Caswell, 2006; Birt et al., 2009). But in all these cases, different limitations

appear. For example in Plant and Wilson (1986), independent stage-durations do not handle correlation between

stages. More importantly, in all cases variance is tied to r, which greatly hampers the inclusion of time-varying

covariates.

To summarise, the geometric stage-duration distributions of the classic Lefkovitch matrix (CLM) provides

highly erroneous projections when stage-distributions are not constant. Despite several attempts to obtain more

realistic stage-duration distributions by augmenting these matrices to include numerous substages, to date no
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framework exists which permits a realistic incorporation of covariates without a large loss of parsimony. In the

next section we show that integral projection models offer an appealing alternative to this potential drawback of

augmenting CLMs.

1.2.4 Integral projection models

The integral projection model (IPM) (Easterling et al., 2000b; Ellner and Rees, 2006) is as an alternative to MPMs

when life cycle parameters are a function of some continuous attribute x, such as body size, mass, length or internal

development. These models use individual-level data to estimate demographic functions, i.e. parametric models

for demographic processes specified in the form of vital rates such as growth, maturation, survival, birth, and

fertility, which are synthetised by a “kernel” function that redistributes individuals at every (discrete) time step t.

In the IPM, the population is represented by a distribution function n(x, t) , where n(x, t)dx is the number of

individuals with their state variable in the range [x, x+ dx] at time t. For simplicity, lets consider that x represents

size. Between times t and t + 1, individuals can grow or die, and they can produce offspring with different sizes.

An IPM updates the distribution n(x, t) via

n(y, t+ 1) =

∫ L

U
K(x, y)n(x, t)dx, (1.1)

where [L,U ] is the range of possible sizes, and the net result of survival and reproduction is summarized by the

kernel K,

K(x, y) = P (x, y) + F (x, y), (1.2)

with P (x, y) representing survival and growth from state x to state y, and F (x, y) accounting for offspring of size

y offspring given that the parents had size x.

The dynamics is determined by the expression (1.1), a continuous-size analogue to the projection of a matrix

model where the transition matrix is a size-based CLM. Thus, the kernel K is analogous to the CLM, with the

advantage that in the IPM framework, by integrating the effect of K(x, y) over all values of attribute x, between-

individual variability is naturally accounted for. This appealing feature of IPMs, as well as the fact that these

models retain much of the machinery of matrix models, has made IPMs an increasingly popular tool in ecological
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and demographic modelling since the seminal work of Easterling et al. (2000b).

Although defined for continuous states, kernel discretisations enables treating IPMs as high resolution matrix

models. Nonetheless, an intrinsic difference between MPMs and IPMs is that MPMs typically use observations to

directly parameterise transition probabilities – which is their main weakness when augmenting matrix dimension

to account for developmental substages – whereas IPMs infer the transition probabilities based on time-lagged

regression of x giving rise to an estimation of kernel K. Thus, a major advantage of IPMs is the natural statistical

treatment of variation and uncertainty they permit.

The approach has become popular in plant and animal studies where key traits are easily measured. The

framework readily incorporates density-dependence, stochasticity and spatial structure (Childs et al., 2003; Ellner

and Rees, 2007; Jongejans et al., 2011; Coulson et al., 2011; Ozgul et al., 2012; Merow et al., 2014). An increasing

literature on IPMs (or IPMS coupled to other modelling schemes) to study ecological aspects as divers as organism

development (Smallegange et al., 2014, 2016); genetic traits (Coulson et al., 2011; Vindenes and Langangen,

2015); infection status (Bruno et al., 2011); host-parasite interactions (Metcalf et al., 2015); and covariates such

as abiotic environments (Metcalf et al., 2009; Dalgleish et al., 2011) or time-lags (Kuss et al., 2008), demonstrates

the potential of this approach.

A strength of IPMs has been the ability to derive vital rates using regression methods to analyse observed state

data (Merow et al., 2014). In fact, as far as we know, all IPM-based studies rely on this regression-based approach.

But IPMs can also be used when the state variable describing variation in vital rates is prohibitively difficult to be

measured, i.e. when a hidden state such as accumulated contamination, parasitic load, physical damage or degree-

days is a pertinent predictor of dynamics. To our knowledge, only De Valpine (2009) has explored IPMs with

hidden states (e.g. internal or within-stage development). Although accommodating individual variation, a major

drawback of the model is it does not handle fluctuating environments and that stage-duration are assigned at birth

and do not change during individual lifespan. Thus, the challenge to generate methods that take advantage of IPMs

to include within-stage development while enabling the incorporation of time-varying covariates and estimation

from development time data has received insufficient attention. This deficit is, basically, what this thesis will

address.

We adopted the Bayesian framework for estimation. In the next section a brief overview regarding the use of

Bayesian estimation methods in ecology is given.
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1.3 Parameter estimation in population models

1.3.1 Overview

Biologists are increasingly expected to provide estimates of responses of population at various levels . The ultimate

aim of population dynamics is to give as accurate as possible predictions of the abundance of a given species in

space and time. Advances in dynamic theory during the last century relied heavily on the deterministic mechanistic

models and analytical techniques. By definition, deterministic models lack environmental and/or demographic

stochastic components (Murray, 2002). When applied to biological systems, given their natural complexity – and,

as in most of cases, irreproducibility of processes –, deterministic models generate trajectories that always diverge

from the processes they seek to emulate. Such effects risk to lead to inaccurate conclusions or projections (Petchey

et al., 2015).

Among the new strategies developed to overcome the limitations of purely mechanistic approaches, those

arising from a marriage between population dynamics and statistical theories/techniques for the analysis and

interpretation of data are becoming increasingly popular. For the greater part of the 20th century these two

paradigms, statistics and dynamics, developed more or less independently and rather at arms length from each

other.

Dynamic models hypothesize the nature of relationship in terms of the biological processes that are thought to

have given rise to the data. The parameters in the mechanistic model all have biological definitions and so they

could – hypothetically – be measured independently of data sets generated by the process in question. By contrast,

in statistics, the choice of data generation model was traditionally guided by mathematical convenience instead of

mechanistic considerations, but the role of data for estimation and validation is central to the paradigm.

Reluctance in both camps to bridge the gap arose mainly from the huge technical difficulties involved in

bringing these two disciplines together. This started to change with the revolution of personal computers in the last

half century and the increasing demand for environmental forecasting for practical purposes.

The integration of data into dynamic models has been termed “data assimilation” and systems designed for such

a task have been called “integrated model-data systems” or “hybrid mechanistic-statistical models” (Liu, 2008).

The aims of data assimilation are to quantify the predictive performance of alternative models, identify where

model predictions can be improved and to quantify errors or uncertainties in model predictions and parameter

estimates.
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As models become more complex, new parameters are included and augment the sensitivity of outputs to

parameters values. Therefore, an accurate assessment of parameter estimates and associated uncertainties is crucial

for the predictive power defining the utility of models. The Bayesian approach is a natural paradigm that permits

to assess uncertainties in estimates and predictions.

1.3.2 Bayesian inference: a brief description

Bayesian inference is an approach to statistical analysis in which all forms of uncertainty are expressed in terms

of probability distributions (Bernardo and Smith, 2000; Gelman et al., 2003). In this method, Bayes’ theorem

(Bayes et al., 1763) is used to update the probability for a hypothesis as more evidence or information becomes

available. A Bayesian approach to a problem starts with the formulation of a data generation model – containing

either deterministic and/or stochastic components – that is hoped to describe adequately the sources of variation in

the data of interest. Next, a prior distribution f(Θ) over the unknown model parameters Θ is formulated, which

is meant to capture our beliefs or knowledge about the situation before incorporation the data y. These beliefs are

adjusted by confronting the model to data via the likelihood function,f(y|Θ), and using Bayes’ rule to obtain a

posterior distribution f(Θ|y). This posterior distribution provides us with an updated representation of the state

of knowledge concerning the likely values that Θ might take. The analysis can be crafted such that the posterior

distribution includes predictions for unobserved observations, for example, populations densities at unsampled

points in space and time.

The description above is summarised in the following relationship:

f(Θ|y) =
f(y|Θ)× f(Θ)∫

...
∫
f(y|Θ)× f(Θ)dΘ

. (1.3)

Although the relationship 1.3 has been known ever since the 18th century, its application was traditionally

severely limited by the intractability of the integrations required to correctly normalise the posterior distribution.

With the advent of digital computers over the last half century, increasingly sophisticated iterative algorithms have

been developed to overcome this difficulty. The basic idea is to draw a large set of random variables from the

posterior distribution from which summary statistics, such as the mean or various quantiles of interest, can be

approximated.

In practice it may not be known how to directly generate such a set of random variables, but it is often
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possible to build a Markov chain which has the target posterior as its stationary distribution. In other words, the

Markov chain governs a random walk that explores the target distribution and provides a series of samples which,

if sufficiently large, can share many of the statistical properties of the desired set of independently generated

random numbers. Such methods are known as "Markov chain Monte Carlo" (MCMC) techniques (Hammersley

and Handscomb, 1964; Kalos and Whitlock, 2008; Liu, 2008).

A plethora of MCMC methods have evolved from two key techniques : the Gibbs sampler; and the Metropolis-

Hastings (MH) sampler (Gelman et al., 2003). The MH sampler is used when the normalisation constant in

equation (1.3) is analytically intractable. The required random walk through the parameter space is obtained by

proposing modifications Θ′ to a given parameter set Θ and accepting the proposed update with probability

min

(
1,
f(y|Θ′)f(Θ′)f(Θ′,Θ)

f(y|Θ)f(Θ)f(Θ,Θ′)

)
, (1.4)

where f(Θ,Θ′) is a proposal kernel and f(Θ′,Θ) is the likelihood of making the reverse proposal. It can be proved

that under certain conditions such a random walk indeed has the target distribution as its stationary distribution.

The power of the algorithm lies in the fact that the problematic normalising constant cancels in the ratio term of

1.4, so it is sufficient to know f(y|Θ) in unnormalised form.

In practice, the choice of proposal kernel f(Θ,Θ′) critically affects whether or not a good approximation

can be achieved within reasonable time limits. If f(Θ,Θ′) systematically generates unlikely proposals, rejection

rates become excessively high. On the other hand, if f(Θ,Θ′) systematically generates proposals Θ′ that are

negligibly different to Θ, acceptance rates are high but the time required to explore the target distribution can

become unreasonably long. In both situations it is said that the chain exhibits "poor mixing". For complex models,

how to generate an efficient proposal distribution to achieve a good compromise between these two extremes is

often a non-trivial problem.

The Gibbs sampler is used when generating random samples of multiple parameters jointly from the target

distribution is intractable or impracticable, but it is possible to generate random samples of subsets of parameters

conditionally on other parameters being fixed. By iteratively switching which parameters are fixed / sampled,

a random walk is generated that can sample unknown posterior (Smith and Roberts, 1993). The Gibbs sampler

can be seen as a special case of the MH sampler where proposals are generated from subsets of the parameter

set. If these proposals are generated from a conditional distribution derived from the target joint distribution then
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acceptance rates will be one and it is unnecessary to calculate (eq. 1.4). However, often it is more common to use

MH samplers within a Gibbs sampler to handle conditional distributions from which samples cannot be generated

directly (i.e. when the normalising constant of a conditional distribution is also intractable). Such a combination

is sometimes called a Metropolis-within-Gibbs sampler (Roberts and Rosenthal, 2006).

Nimble, a software for Bayesian estimation. These, and other, MCMC algorithms have become readily

available to via the BUGS (Bayesian Inference Using Gibbs Sampler) (Spiegelhalter et al., 1996) language. Various

software implementations are now available, including WinBUGS, JAGS, openBUGS and NIMBLE (Lunn et al.,

2000; Plummer et al., 2003; Cowles, 2013; De Valpine et al., 2016). The BUGS language uses a convenient and

intuitive pseudo-code to construct a directed acyclic graph that represents deterministic and stochastic dependence

between various variates in a Bayesian model. A major limitation of BUGS is that users are constrained to make

use of canonical distributions in the models. Users requiring to write custom functions must therefore do so in a

low level language such as C.

NIMBLE offers a flexible new system for building BUGS-like models in R that automatically compiles code

to C++. The main advantages of NIMBLE are that it permits generating user-defined functions and distributions

in an easy, R-like language, and that C++ compilation drastically improves computational times. User-defined

samplers can also be generated likewise, giving a flexibility that at the same time, remains relatively accessible for

non-computational ecologists. Another key advantage of NIMBLE is it provides a suite of functions to simulate

BUGS models and enables a separation of algorithm and model that, compared to writing custom MCMC samplers

for a model, greatly simplifies scripts for analyses. The model and analyses of chapters 2 and 3 were first written

in R, but were converted to NIMBLE for its greater clarity and efficiency.

1.3.3 State-space models

Overview

The state-space model (SSM) is a statistical framework for time-series data that allows including two sources

of variability namely some dynamic process and measurement error (Newman et al., 2014). A SSM combines

a process model of the dynamic system; an observation model that links data to the process model; and an

algorithmic component that fits the model to data, generates predictions and quantifies uncertainties. State-space

models reduce bias and provide more accurate estimates of uncertainty than methods that do not fully incorporate
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both sources of variation (De Valpine and Hastings, 2002).

Formally, a SSM is a Markov process with two parts: the true unobserved state process x1:t (with the sub-index

indicating the series of discrete time-steps from 1 to t); and the observation process y1:t that models the way data

yt is generated given the hidden state xt (Fig. 1.2). The SSM depends on vector of parameters θ. Calibrating the

model, i.e. obtaining estimates for θ and x1:t that provide likely explanations for the data, is obtained via statistical

inference. In the Bayesian paradigm this involves computing the posterior distributions such as p(x1:t|y1:t, θ),

p(x1:t, θ|y1:t), or p(θ|y1:t). In most of cases, the constant required to normalise these posterior distributions is

analytically intractable and thus sampling-based methods are required to get estimates.

Figure 1.2. Schematic representation of a state-space model. The “state” of the hidden process x evolves conditionally given the state

at the previous time step. The Markov transition rule f(xt|xt−1) can contain any combination of deterministic and stochastic elements.

Each observation yt is generated conditionally on the hidden state xt. Modified from Cappé et al. (2007).

Methods for estimating parameters in a SSM framework.

When observations are informative, they can be used to prevent divergence between simulated trajectories and

the true unknown (i.e. only partially observed) dynamic process. This uses algorithms that are collectively known

as “filtering” since they filter out projections that do not fit the observed data well.

Filtering methods are popular choices for fitting SSMs. The target distribution of most filtering algorithms

is p(x1:t|y1:t, θ). Among these algorithms, the Kalman filter (Kalman, 1960) has been a standard choice for

efficiently fitting SSMs when the dynamics are linear and the observation model is Gaussian. Unfortunately,

ecological dynamics rarely remain linear for more than very short durations of time and observations are more

typically counts or presence/absence records implying that a Gaussian observation model can be a source of bias.

Various variants to the Kalman filter have been proposed for very specific non-linear filtering problems (Routray
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et al., 2002; Evensen, 2003; Lefebvre et al., 2004), but these variants have failed to provide consistent reliable

estimates for general non-linear and non-Gaussian systems.

More general dynamic systems, including those with chaotic or near chaotic behaviour, have been treated in

the SSM framework via alternative strategies including particle filters, MCMC techniques, information reduction

approaches (e.g. approximate Bayesian computation (ABC) or synthetic likelihood (SL)) and hybrid samplers

(e.g. particle MCMC). These four approaches are briefly described below in order to highlight the most suitable

for estimation with our IPLM models.

Particle filtering, also known as sequential Monte Carlo (SMC), offers a general recursive and computationally

tractable solution for Bayesian approximation of f(x1:t|y1:t, θ) for nonlinear and non-Gaussian problems (Del Moral,

1996; Cappé et al., 2007; Liu, 2008). The SMC sequentially approximates the marginal distribution of the

latent process on the fly, i.e. as new observations are incorporated. These algorithms are somewhat analogous

to Darwinian natural selection. At each time t, the distribution f(x1:t|y1:t, θ) is approximated with a set (or

population) of discrete vectors {x̂1:t}. The elements of this set are called particles, each with an assigned weight.

The weights are analogous to Darwinian fitness and are used to ensure survival of the fittest. Whether or not a

proposed sequence x̂1:t survives to the next time step depends on how likely the sequence appears to be, given θ

and y1:t, and weights (fitness) are used to remove individuals from the population via importance sampling.

To maintain a constant population size, a resampling step is included: particles with low importance weights

are replaced by multiple copies of those with high importance weights. This resampling has a well known pitfall:

if f(xt|xt−1, θ) is poorly specified then excessive loss of particle diversity at this step can result in {x̂1:t} only

approximating a narrow subset of f(x1:t|y1:t, θ) – in our Darwinian analogy this is somewhat equivalent to a loss of

genetic diversity in an isolated sub-population. This problem can be tackled by increasing the number of particles

N . However, in high dimensional cases as the one we are envisaging, this renders the method computationally

inefficient. Moreover, a key limitation of SMC is that θ is fixed and not estimated, which hampers ecological

applications.

In general Markov chain Monte Carlo (MCMC) methods outperform particle filters in high-dimensional

parameter estimation problems. However, a key exception is the estimation of f(x1:t, θ|xy1:t) where traditional

MCMC algorithms rapidly become inefficient as time series length t increases. The limiting factor arises from

the difficult methodological challenge of generating joint proposals {x′1:t, θ
′} that result in efficient exploration of
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f(x1:t, θ|y1:t). Recently, new hybrid strategies have been developed specifically to overcome this problem. Among

these, the most celebrated are the particle MCMC (PMCMC) (Andrieu et al., 2010) and the sequential Markov

Chain Monte Carlo (SMC2) (Chopin et al., 2013) algorithms.

The PMCMC uses particle filtering to generate state-space sequence proposals x′1:t within a MCMC algorithm.

This has provided efficient mixing for previously intractable non-linear non-Gaussian SSM inference problems;

and has been profusely used and extended since its publication (Rasmussen et al., 2011; Frigola et al., 2013;

Donnet and Samson, 2014). The SMC2 algorithm is a sequential Monte Carlo algorithm that re-samples at every

time step the parameter space via a MCMC update. Despite great flexibility in terms of the types and structure of

data allowed by both PMCMC and SMC2, computational cost is still a critical factor that hampers more widespread

use of these methods. A recent free software (LibBi, Murray and Daszak (2013)) for Bayesian inference of SSMs

has made PMCMC and SMC2 widely available and permits parallel computing on Graphical Processing Units

(GPUs) to reduce computation time.

Approximate Bayesian computation (ABC) is a popular alternative to model-based inference that is particularly

powerful when likelihood functions of dynamic models are intractables (Tavaré et al., 1997; Pritchard et al., 1999).

The ABC approach bypasses the need to evaluate likelihood functions by comparing repeated simulations with an

observed data set via a set of summary statistics S(y) of data y. Another recent simulation-based approach for

inference in SSMs is synthetic likelihood (SL)(Wood, 2010; Fasiolo and Wood, 2015). Both methods focus on the

relationship between some characteristic features of the data and the unknown parameters. For this, the observed

and simulated data are transformed into a set of summary statistics that aim to capture the essential characteristics

of the dynamic process and permit that subsequent inferences is based on these characteristics. Although both

ABC and SL make use of a ad hoc vector of summary statistics S(y), their main difference is that ABC uses a

nonparametric-style density estimator for f(S(y)|θ) whilst SL takes a parametric form – the “synthetic likelihood”

– assumed to be a Gaussian distribution f(S(y)|θ) ∼ N
(
S̄sim,

∑
sim

)
, were S̄sim and

∑
sim are the mean and

covariance matrix of the vector of summary statistics S(y). In a Bayesian context, the SL methods essentially

marginalise across uncertainty in the state space x to give estimates via the posterior distribution f(θ|y).

For complex problems, the choice of the summary statistics should be based on the results of exploratory

analyses. This demands iterative model checking to identify discrepancies in fit, which in turn can suggest extra

statistics to incorporate in a revised SL. This drawback is largely compensated by the simplicity of the approach.
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1.4 Conclusion

1.4.1 Motivating example

The models and methods I present in this thesis are generic in the sense that they could be applied to the life-cycle

of many organisms with instars or eggs. Where sufficient developmental data for time-lagged regression exist

(e.g. size, weight), the integral projection model is a suitable and parsimonious alternative. But for species where

recording size or weight is either impracticable or prohibitively difficult, but maturation time data is available

or easily obtained, the model and methods presented here are a valuable addition to the toolbox for modelling

stage-structured populations. This is the case for Culicoides , biting midges, a genre of insects of epidemiological

interest (Carpenter et al., 2013) that we used in our case studies of chapters 3 and 4.

Important gaps exist in the knowledge of how life history parameters (mainly those associated to immature

stages) of Culicoides depend on biotic and abiotic variables, under both laboratory and natural conditions (Mullens

et al., 2015). A life-cycle model with more demographic and biological realism than currently available models

could provide a basis for exploring these interactions, and, potentially, could help analyse phenological data and

identify the most influential demographic parameters, i.e. the potential control points in the Culicoides life-cycle.

In the appendix B.1, an overview of biological and epidemiological aspects of Culicoides biting midges is

provided.

1.4.2 Aims and objectives

The aim of this work was to developed a predictive model for the dynamics of structured biological populations that

includes the ubiquitous heterogeneity in developmental processes while enabling estimation of vital rate responses

to exogenous factors – particularly temperature – for approximating seasonal variation of populations in natura.

Achieving this aim implies addressing the following objectives:

• Formulate a mechanistic model that can reproduce observed variance in developmental processes and

enables realistic incorporation of time-varying covariates, while remaining flexible enough to incorporate

other demographic (i.e. density-dependence, endogenous stochasticity, correlation in stage-durations) and

environmental (i.e. multiple covariates, exogenous stochasticity) complexities.

• Develop Bayesian methods for parameter estimation with maturation time (i.e. stage-duration) and mortality
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data from typical laboratory studies (i.e. that readily handle censoring and missing data).

• Analyse model performance (i.e. identifiability) with the help of simulated data prior to incorporating real

data into the model.

• Fit the model to Culicoides maturation data at various fixed temperatures and estimate associated uncertainties.

• Develop and identify suitable functional response curves for linking Culicoides life history parameters to

environmental variation at unsampled temperatures.

• Analyse the consequences of estimated Culicoides vital rate parameters on long-term and transient dynamics

at fixed and time-varying temperatures, as well as in potential applications to the study of phenology and

transmission risk of an animal disease vectorred by Culicoides midges.

• Extend the model framework to state-space models in order to upscale to natural scenarios that permit the

integration of field data (e.g. time series) to reduce uncertainty and permit simulations for predicting the

responses of state-structured populations to global change or local anthropogenic interventions.

1.4.3 Thesis outline

This thesis is divided into five chapters.

Chapter 1 gave a general introduction. The framework and motivations of the present work were described.

Next, an overview on different modelling approaches of state-structured populations with particular emphasis on

how different approaches handle developmental variation and its dependence on covariates were presented. A short

description of relevant Bayesian estimation methods were outlined. Finally, a brief description of the motivating

example was provided and general aims and objectives were stated.

In chapter 2, I introduce and develop in detail a novel predictive model, the “integral projection Lefkovitch

matrix” (IPLM) model for stage-structured populations. I show with a simulated study (i) the flexibility of

IPLMs to incorporate random effects and correlation between stage duration distributions; (ii) Bayesian estimation

methods that use maturation-survival data, and handle censoring appropiately; and (iii) the estimation performance

of Bayesian IPLMs. I conclude that Bayesian IPLMs show great promise as a framework for parameter estimation

and model inference for more realistic stage-structured population models and suggest potential extensions, some

of which are explored in the remaining chapters.
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In chapter 3, the IPLM approach is extended to include covariates on demographic parameters. Real laboratory

data at various fixed temperatures from two ecologically similar Culicoides species is used in the Bayesian

framework to obtain, via spline regression, functional responses of stage-specific vital rates to temperature.

Long-term and transient dynamics are analysed. I show that traditional negligence of individual developmental

heterogeneity affects asymptotic growth rate estimates and greatly undermines the importance of transient

oscillations in the population density. A brief assessment of the robustness of the linearity assumption of classic

degree-day phenological models is performed, using the fitted Culicoides IPLM model. The results provide little

support for linear degree-day models.

In chapter 4, two potential lines of research are explored. First, I use the Culicoides IPLM model to analyse

temporal variation in the R0 of bluetongue (see table 1.2) under an adult control scenario. The implications

of our results for integrated vector management are outlined. Next, I explore methods to upscale to natural

scenarios by using IPLMs in a state-space model in order to integrate field data (e.g. adult time series). I explore

potential methods for inference and use a simulation-based approach (synthetic likelihood, Wood (2010)) in a

preliminary study with simulated observation data. Methodological challenges and potential improvements are

outlined. Finally, in chapter 5, the main developments and findings of this work are summarised and concluding

remarks are given.



Chapter 2

A model for individual heterogeneity in hidden

developmental processes

The motivating problem in this chapter 1 is the study of organisms whose development occurs though discrete

stages. Our ultimate objective is to gain insight into how variability in developmental response of individuals

influences the vital rates of a stage-structured population. For this, we develop a new model that, by including

within-stage development dynamics – i.e. stage-specific hidden developmental states –, provides more realistic

stage-duration distributions of such populations. We demonstrate these methods by generating in silico maturation-

time data of a cohort where correlation is included via individual qualities, and evaluate estimation performance

of the new model with Bayesian methods that use stage-duration and survival data for estimating vital rates.

2.1 Introduction

A central premise of population biology is that a population’s dynamics are driven by the timing of life-cycle events

(Caswell, 2006). When life-cycles progress via a series of developmental stages, describing how each stage’s

vital rates vary with genetic and environmental factors provides a basis for studying a population’s dynamics

(Manly, 1990). Analysis and simulation with stage-structured models (SSMs) has featured numerous biological

complexities including density-dependence, stochasticity, time-varying parameters and dispersal (Van Tienderen,
1Most of the work presented in this chapter is part of an article submitted to the journal Methods in Ecology and Evolution (see Appendix

D).

26
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1995; Cushing et al., 2002).

In the previous chapter (section 1.2) we have seen that assumptions of different SSM approaches (delay

differential equations, stage-duration distribution models and matrix population models) regarding variation in

the time required to mature through a given stage (i.e. the maturation-, development- or sojourn-time), are

oversimplified, unrealistic and lack generality. We have also highlighted that such oversimplification can result

in poor stage-duration distribution (SDD) approximations and inaccurate predictions of population growth rates

and related quantities (Vindenes et al., 2008; Bolnick et al., 2011); and that models with greater generality are

required if the forecast horizon (Petchey et al., 2015) of SSMs is to be increased.

We have seen (section 1.2.4) that integral projection models (IPMs) enable linking individual variation (and

covariates) to key population-level developmental parameters. Insufficient attention has been given to (IPMs)

regarding their ability to model life-cycles with hidden developmental states where typical time-lagged regression-

based parameterisation is either impracticable (e.g. parasitic load, physical damage) or a poor predictor o stage-

duration (e.g. when eggshells, exoskeletons or hosts effectively hide within-stage development).

Here, we propose to formulate stage-duration distributions in terms of an internal development state whose

dynamics follow an integral projection model. More precisely, we extend standard matrix models by incorporating

IPM approximations that track individuals through a series of developmental substages to yield more realistic

stage-duration distributions. Estimation can be based upon treating within-stage development as an unobserved

state variable and by fitting model outputs to maturation-time data.

These new “integral projection Lefkovitch matrix” (IPLM) models inherit the analytical advantages of matrix

models and the development heterogeneity of IPMs, allowing thus the distributional flexibility of SDDMs.

Additionally, the IPLM framework enables realistic incorporation of (and parsimonious parameterisation with)

both time-varying covariates and/or unmeasured local or genetic factors.

By tracking within-stage development, the new methods we develop greatly reduce errors in projected stage-

duration distributions and provide valid transition probabilities for non-stable stage distributions. In consequence,

errors in transient or non-linear dynamics analyses can be reduced and might improve forecast horizons od stage-

structured models.

In section 2.2 we outline the IPLM framework and describe how these models can be parameterised using either

marked or unmarked maturation-time data. Then, in section 2.3, a simulation-estimation study where individual
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qualities correlate between-stage maturation times is developed. Bayesian inference is performed to investigate

the identifiability of estimates assuming individually marked data. Finally, results are discussed in section 2.4.

2.2 Integral projection Lefkovitch matrix models

2.2.1 The classic Lefkovitch matrix (CLM) model

The following recursive formula is a popular tool for studying demographic dynamics

Nt = MtNt−1, (2.1)

where Nt denotes a vector of densities for a series of k age (Leslie, 1945) or stage (Lefkovitch, 1965) classes at

time t and Mt is a projection matrix. While Lefkovitch (i.e. stage-structured) matrices can be constructed in many

ways to match the great diversity of life-cycle strategies found in nature, here we focus on matrix models of the

form 


n1

n2

n3

· · ·

nk




t

=




W1 F2 F3 · · · Fk

B1 W2 0 · · · 0

0 B2 W3
. . .

...
...

. . . . . . . . . 0

0 · · · 0 Bn−1 Wk




t




n1

n2

n3

· · ·

nk




t−1

. (2.2)

We call the matrix in (2.2) a ‘classic Lefkovitch matrix’ (CLM), noting that our methods can generalise to matrices

for other stage-structured life cycles. A tempting misinterpretation of (2.2) is that, in time-step t, individuals in

some stage S ∈ {1, . . . , k} remain with probability WS , advance one stage with probability BS , contribute to the

next generation with fecundity FS and survive with probability νS = WS + BS . However, this neglects within-

stage developmental heterogeneity, assumes geometric sojourn-time distributions and only yields valid transition

probabilities when stage distributions are stable (Lefkovitch, 1965; De Valpine et al., 2014). Thus, such matrices

can generate highly erroneous results unless vital rates are relatively constant and impervious to exogenous sources

of variation.
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2.2.2 Incorporating within-stage development dynamics

These limitations can be overcome by replacing scalar elements WS , BS and FS of matrix Mt with sub-matrices

WS , BS and FS characterising within-stage development, between-stage development and fecundity respectively.

Thus, every scalar nS of equation (2.2) is replaced by nS , a vector of rS discrete within-stage development states.

Note that rS can vary between stages.

We define sub-matrices WS , BS and FS via stage-specific IPMs. An IPM for within-stage development can

be written

n(δ′, t) =

∫ 1

0
KΘ(δ, δ′)n(δ, t− 1)dδ, (2.3)

where n(δ, t) is the density of individuals with developmental status δ at time t, Θ is a parameter set, and the

IPM-kernel KΘ(δ, δ′) quantifies the proportion of individuals with development δ that survive and develop to δ′ in

one time-step. Transition to next stage occurs once δ ≥ 1, whereby development in the new stage is initialised with

δ = 0. Unlike previous models including within-stage dynamics into CLMs (Longstaff, 1984; Birt et al., 2009),

this approach can improve SDD approximations independently of the number of substages rS since within-stage

transition probabilities are all defined in terms of the IPM-kernel parameter set Θ.

Discretisation of a within-stage IPM. For practical purposes, we simplify the general form 2.3 by assuming

that the increments by which individuals develop are drawn independently from the same distribution at each time

step. Therefore, we re-write the IPM kernel KΘ(δ, δ′) as KΘ(∆), with ∆ = δ′ − δ. In the examples presented in

this and the next chapter, we use for KΘ a beta distribution with parameters {µ, κ} accounting for developmental

rate heterogeneity, combined with survival probability ν. The beta distribution is a natural choice since δ ranges in

[0, 1) for each stage. This model provides the same level of parsimony as SDD models: each defines the distribution

of sojourn-times and mortality with three parameters. In our model, the kernel for each stage projects individuals

through a developmental process to derive the probabilities of stage completion or death in any given time interval

– these probabilities provide the basis for estimating parameters from data. Consequently, some computation time

is required for model fitting, but the benefit is a model formulated in discrete time-steps that can accommodate

time-varying covariates.

Like other IPMs, we approximate the continuous state variable δ by a series of discrete states. Given a series of

r discrete states between 0 and 1, we calculate the probability pl of completing l discrete increments in a time-step

by integrating over an interval of KΘ (more details in Appendix A.1).
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These transition probabilities provide, for a stage S, elements for the following rS×rS lower-triangular matrix:

WS = νS




p0,S

p1,S p0,S 0
p2,S p1,S p0,S

...
...

. . .

pr−1,S pr−2,S p0,S




. (2.4)

Note, the probabilities {p0,S , . . . , pr,S} depend on the stage-specific parameters {µS , κS , νS}. Matrix BS

provides the proportion of individuals making the transition to the next stage, where development is initialised in

the first substage. Thus, if B1
S

denotes the first row of matrix BS , element j of B1
S

is
∑r

l=r+1−j pl,S . Each matrix

FS is constructed assuming all individuals completing stage S contribute FS to the next generation. Thus, the first

row of FS is F1
S

= FSB1
S

. All other elements of BS and FS are zero and FS = 0 for non-reproductive stages.

Alternative definitions for BS and FS are possible (e.g. transition to multiple stages or state variable allowing for

processes such as shrinking), but are not explored here for simplicity.

The matrix approximation of the IPM (2.3) for stage S is therefore




nS

cS



t

=




WS 0

B1
S 1



t




nS

cS



t−1

, (2.5)

where, at each time, nS gives the distribution of population density in the rS substages, and cS is the cumulative

density of individuals that have completed stage S. We call ΘS = {µS , κS , νS} the parameter set of the discretised

IPM-kernel.
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2.2.3 The general integral Lefkovitch matrix (IPLM) model

The extension of the CLM (equation 2.2) to include within-stage dynamics is

Nt =




W1 F2 F3 . . . Fk

B1 W2 0 . . . 0

0 B2 W3
. . .

...
...

. . . . . . . . . 0

0 . . . 0 Bm−1 Wk




t

Nt−1, (2.6)

where N T = (nT
1
, . . . ,nT

k
) and the model parameter set is Θ = {Θ1, . . . ,Θk}. We call any matrix built on

these principals an integral projection Lefkovitch matrix (IPLM). Because of its construction, we can note that

when all rS = 1, an IPLM reduces to a CLM, while when all rS → ∞, the system (2.6) becomes a canonical

stage-structured IPM. In practice, we seek rS small enough to maintain computational efficiency yet large enough

to characterise sojourn-time variance for stage S. Since the dimension of ΘS is independent of rS , parsimony

is unaffected as matrix dimension increases. Covariates or random effects can be incorporated with relative ease

via ΘS , thus IPLMs can incorporate exogenous or endogenous sources of heterogeneity. These developments can

therefore greatly augment the range of scenarios studied with the powerful tools of matrix model analysis.

Beta distribution for developmental variation. The choice of a function to describe the heterogeneity

in developmental rates (represented by the increments ∆) is flexible. We use beta distributions for their

parsimonious flexibility on [0, 1]. Thus individual variation in developmental responses is modelled by the

probability distribution function (PDF)

f(∆|θ) =
∆α1−1(1−∆)α2−1

B(α1, α2)
, (2.7)

where θ = {α1, α2} are parameters and B(·, ·) is the beta function. Bi-modality is avoided by constraining α1

and α2 to be greater than one. Since α1 and α2 do not yield biological interpretation, we use the alternative

parameterisation θ = {µ, κ}, where µ = E[∆] = α1
α1+α2

is the expected developmental increment and κ ∈ (0, 1)

is a scale parameter such that Var(∆) = κµ(1− µ). The probability pl (defined in Appendix A.1) of completing l



32

discrete increments in a time-step is thus

pl = F ( l+1
r+1 |θ)− F ( l

r+1 |θ), (2.8)

where F (∆|θ) is the cumulative distribution function (CDF) associated with f(∆|θ).

2.2.4 Fitting with maturation time data

We consider fitting IPLMs using either marked or unmarked cohort development data. Marked cohort data provide

the time or time-interval of each stage transition for each individual. Unmarked cohort data include the number

of individuals maturing from a stage in a time interval given that their development was synchronised at t = 0.

Typically, the number dying in one or more time intervals is also reported. The harder problem of fitting an IPLM

to partially observed time-series data from overlapping generations – which often arises in studies of natural insect

populations – is not addressed in this section.

Since within-stage development is typically unmeasurable, the common vital rate regression strategy for IPM-

kernels is unfeasible. Instead, we take a likelihood approach, which can then be used in either a Bayesian or

frequentist framework. As in SDD models, the likelihood of observed stage-duration data yS depends on the

probabilities (given ΘS ) of surviving and completing stage S in each time-step. We calculate these probabilities

by iterating the discretised IPM (equation 2.5). More specifically, we:

1. initialise nS (t = 0) = (1, 0, . . . , 0)T and cS = 0;

2. project nS (t) forward;

3. for each t, record the matured proportion cS , and the loss of density over the vector (nT
S
, cS )t, to construct a

sojourn-mortality distribution (Fig. 2.1, and a more detailed description in Appendix A.3); and

4. use these probabilities to evaluate the likelihood of data yS given ΘS .

For marked data, individual-level covariates or random effects (e.g. individual qualities) can be included via

individual-specific kernel calculations.
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Figure 2.1. Implementing a basic integral projection model (IPM) for within-stage dynamics. The IPM-kernel KΘ is defined as the

product of a stage-specific survival probability ν and a probability density function (PDF) for development increments. Here, ν = 0.97

and the PDF is Beta(α1 = 5, α2 = 50) (a). A population, initialised in the first substage (t = 0), is projected forward through a series of

(r = 50) discretised developmental increments (b). The accumulation of density in the final substage, and the loss of density over all

substages, generates the “sojourn-mortality distribution” – the probabilities to complete the stage, or die in the stage, per time-step. Here,

the cumulative sojourn-mortality distribution is shown with the interval t = 0 to t = 12 coloured orange (c). Dashed lines (c) correspond

to the developmental distributions at t = 0, t = 4 and t = 12 (b).

2.3 A simulation study with correlated stage-durations

To test the identifiability of IPLM parameters, a simulation-estimation experiment was conducted. Motivated by

recent directions in eco-evolution, the basic IPLM model (equation 2.6) was modified to incorporate correlated

stage-durations arising from heterogeneous individual qualities.

Quality parameters are used in eco-evolution to parsimoniously quantify net effects of genetic or local factors

on vital rates (Ardia, 2005; Wilson and Nussey, 2010; Vindenes and Langangen, 2015; Shyu and Caswell, 2016),

and heterogeneity in individual qualities can generate correlated stage-durations (De Valpine, 2009). Despite

much theoretical work, the estimation of individual qualities, associated sojourn-mortality distributions and their

evolutionary consequences in real populations remains challenging. In this section, we outline how Gaussian

copulas (Kruskal, 1958; Nelsen, 2006) enable individual qualities to condition IPLM kernels, and demonstrate

that, even with modest sample sizes, a quality-dependent IPLM fitted to simulated marked-cohort data for just two

sequential stages can accurately reproduce sojourn-mortality distributions.
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2.3.1 Correlated stage-durations and Gaussian copulas

Copulas are tools for modelling correlations in arbitrary sets of random variables (Hougaard, 2012). Here,

individual quality (q) and development increments (∆) are correlated via Gaussian copulas. In this framework,

we specify the marginal q- and ∆-distributions, and assume their correlation follows the same quantiles as a bi-

variate normal distribution with correlation parameter ρ. We assume q is fixed through an individual’s lifespan

which conditions implicitly (via ρ) the distribution of increments at each time-step.

Let f∆(∆|α∆) and F∆(∆|α∆) denote the marginal (beta) PDF and CDF of developmental increments, with

parametersα∆ . Let fq(q|αq) denote the marginal PDF of individual qualities, with CDF Fq(q|αq) and parameters

αq. We assume q follows a standard uniform distribution, noting that any other distribution could be derived via

a probability integral transform. A Gaussian copula with correlation ρ allows to establish the joint distribution

f(∆, q, |α∆ ,αq, ρ) while preserving the specified marginal distributions (see details in Appendix A.2), from

which we obtain the conditional distribution of development increments given quality, f
∆|q(∆|α∆ , q, ρ), and its

corresponding CDF, F
∆|q(∆|α∆ , q, ρ). The later provides the matrix elements pl given q:

pl|q = F∆|q(
l+1
r+1 |α∆ , q, ρ)− F∆|q(

l
r+1 |α∆ , q, ρ). (2.9)

Since stage-durations of individuals are correlated via q, unique IPM-kernels are required for each individual at

each stage.

2.3.2 Generating in silico survival data from the quality-dependent IPLM model

In silico survival data for two successive stages was generated as follows. Sample size was fixed as N = 50

individuals and the duration of the maturation experiment was set to tc = 21 time steps, whereafter all data were

right censored. Qualities {qi}i=Ni=1 , correlation coefficient ρ and initial parameters {µ1, µ2, κ1, κ2, ν1, ν2} were

initialised with draws from a standard uniform distribution, while model resolutions r1 and r2, with draws from

Uniform(0, RMax), with RMax = 100. Parameters for stage 1, {µ1, κ1, ν1, r1}, and stage 2, {µ2, κ2, ν2, r2}, were

obtained using a rejection sampler (algorithm 2.3.1) that ran until the following constraints were satisfied:

1) all parameters α1 and α2 (of the alternative parameterisation α1 = µ (1−κ)
κ and α2 = (1 − µ) (1−κ)

κ ) for the

development rate (beta) distributions f∆ of each stage were greater than one, and
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Algorithm 2.3.1: DATA SIMULATION WITH CONSTRAINTS (inputs=N,Nmin
d2

)

comment: Initialise all parameters.

{µ1, µ2, κ1, κ2, ν1, ν2, q1, . . . , qN , ρ} ∼ Uniform(0, 1)
comment: Determine alternative parameters.

{µ1, κ1} → {α11, α12}
{µ2, κ2} → {α21, α22}
comment: Simulate cohort data nc1 , nc2 , nm1 , nm2 , nd2

while nd2 < Nmin
d2

or min{α11, α12, α21, α22} < 1

do





∗comment: Use rejection until constraints are satisfied.

if (nc1 + nc2 > nm1 + nm2) or min{α11, α12, α21, α22} < 1

do





{µ1, µ2, κ1, κ2, ν1, ν2, ρ, q1, . . . , qN} ∼ Uniform(0, 1)
{µ1, κ1} → {α11, α12}
{µ2, κ2} → {α21, α22}
Simulate cohort data

else if (nc1 + nc2) 6 (nm1 + nm2)

do





comment: Stepping-in avoids high rejection rates.

if ν1 = min{ν1, ν2}
do ν1 ∼ Uniform(ν1, 1)
else
do ν2 ∼ Uniform(ν2, 1)

Simulate cohort data
return (nc1 , nc2 , nm1 , nm2 , nd2 , µ1, µ2, κ1, κ2, ν1, ν2, α11, α12, α21, α22, q1, . . . , qN , ρ)

2) daily survival parameters {ν1, ν2} were sufficiently large that the number of individuals completing both stages

(nd2 , see below) was at least Nmin = 35.

After the simulation, the number of individuals that got censored (nc1 , nc2), died (nm1 , nm2) or developed

(nd1 , nd2) in each stage was recorded. If nd2 < Nmin
d2

and nc1 +nc2 > nm1 +nm2 , all parameters were resampled

from their priors. Otherwise, if nd2 < Nmin
d2

and nc1 +nc2 ≤ nm1 +nm2 , the lowest of the two survival probabilities

was resampled from a uniform prior truncated at the current value of ν. The rejection sampler was stopped once

nd2 ≥ Nmin
d2

(see Algorithm 2.3.1).

The fate of each individual i in each stage was described by two pieces of information:

1) the time-to-event, yiA ∈ {1, . . . , tmax}; and

2) the event-type, yiB ∈ {stage completion, mortality,censored}.
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Probabilities associated with combinations of yiA and yiB were obtained by adapting the description given in

Appendix A.3 to the two-stage quality-dependent case as follows. The probabilities pl|qi permitted conditional

construction of the IPM-approximation (2.5). The unit pulse vector (nT , cS )0 = (1, 0, . . . , 0)T was projected

to give, for each time-step t ∈ {0, . . . , tmax}, the probabilities to complete a stage, pd(t|qi), or to die, pm(t|qi).

The probability of right-censor beyond tmax is pci = 1 −∑tmax
t=1

(
pd(t|qi) + pm(t|qi)

)
. For stage 1, tmax is just

tc, and death or right-censor in stage 1 happen (if it happens) at tc, which imposes that pci = 1 for stage 2.

Otherwise, for stage 2, tmax is t(i)max = tc − t(i)s2 , where t(i)s2 is the time-step at which individual i enters stage 2. The

probabilities pd(t|qi), pm(t|qi) and pci define the right-censored sojourn-mortality time distribution for every of

the N individuals in a given stage.

Individual-level data (i.e. time-to-event and event-type) can be obtained by sampling the categorical

distribution,

(yiA, yiB) ∼ Categorical
(
pd(1|qi), pm(1|qi), . . . , pd(tmax|qi), pm(tmax|qi), pci

)
. (2.10)

Probabilities pd(t|qi) and pm(t|qi) we obtained using the marginal F
∆|q(∆|α∆ , q, ρ) to evaluate the expression

2.9. These probabilities then were used to calculate, for each stage, the "true" mean (µ̃) and standard deviation (σ̃)

of maturation-times and the probability to survive to maturation (ν̃) (Appendix A.3).

2.3.3 Assessing estimation performance

To asses the identifiability of estimates from the quality-dependent IPLM model, 500 simulations were performed

by applying the procedure described in section 2.3.2.

Estimation. We adopt a Bayesian approach to estimate stage-specific parameters {µ, κ, ν, r}. Throughout,

we use standard uniform priors for {µ, κ, ν} and the prior Uniform(0, RMax) for r, where RMax is a maximum

resolution chosen to be large enough to optimise model fit but small enough to maintain computational efficiency.

We use Markov chain Monte Carlo (MCMC) (Gelman et al., 2003) to sample posteriors of the form

f(µ, κ, ν, r|y) ∝ f(µ)f(κ)f(ν)f(r)f(y|µ, κ, ν, r), (2.11)

where y represents a set of independent data sets.
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For each simulation, MCMC was used to approximate the posterior distribution

f(µ,κ,ν, r,q, ρ|yS1
,yS2

) ∝ f(ρ)f(q)
∏

s∈{S1,S2}
f(µs)f(κs)f(νs)f(rs)

N∏

i=1

f(yis|µs, κs, νs, rs, ρ, qi). (2.12)

This was achieved using the default block Metropolis-Hastings sampler in NIMBLE (NIMBLE Development

Team, 2016). Thinning was set to twice the minimum expected sample size (Plummer et al., 2006) obtained from

pre-runs (Appendix A.4 ). Thereafter, 104 thinned MCMC samples were generated and convergence diagnostics

were performed using CODA (Plummer et al., 2006).

2.3.4 Results

Posterior medians and 95% credibility intervals (CI95) of the means (̂̃µ), standard deviations (̂̃σ) and total survivals

(̂̃ν) of the joint sojourn-mortality distribution were plotted against true values (Fig. 2.2). Medians were distributed

evenly around the 1:1 line and uncertainty was sufficiently small to suggest that the sojourn-mortality distribution

approximations were accurate given the sample size. Precision was greatest when µ̃ and σ̃ were small. The CI95s

of estimated parameters enveloped true values in approximately 95% of simulations. Banding was evident in the

posteriors for ν̃; this arose from the limited set of possibilities regarding the number of individuals completing

both stages.
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Figure 2.2. Estimated (y-axes) vs. true (x-axes) mean (µ̃), standard deviation (σ̃) and total survival probability (ν̃) of sojourn-mortality

distributions generated from 500 simulations of N = 50 individuals with a two-stage quality-conditioned IPLM model. For each

simulation, the median (green) and the upper (red) and lower (blue) bounds of the 95% credibility interval obtained from MCMC

sampling of the posterior distribution are shown. The one-one (dashed) line is shown for reference. The number of outliers where CI95s

failed to envelope the true parameters were: 25 for µ̃1, 32 for µ̃2, 20 for σ̃1, 29 for σ̃2, 20 for ν̃1 and 28 for ν̃2.

In general, the CI95s of estimated values for r1, r2, ρ and {q1, . . . , qN} enveloped the true values (Figs. 2.3

and 2.4). Uncertainty was larger for these parameters than for µ̃, σ̃ and ν̃. The largest CI95s for qualities qi were

associated with individuals that died in stage 1, and the greatest precision was achieved when sojourn-times were

right censored (Fig. 2.4). For fully developed individuals, quality estimates ranged greatly in precision. True vs.

fitted values of ρ showed that, despite uncertainties in the qi, relatively accurate estimates for ρ were obtained (Fig.

2.3). The posterior median and CI95s for resolution were clustered in horizontal bands suggesting that model fit

was not sensitive to resolution so long as resolution was not too small (Fig. 2.3). This implies that very large

values of r can be computationally superfluous since even relatively low resolutions can yield sojourn-mortality

distributions as accurate as can be supported by the data.
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Figure 2.3. Estimated (y-axes) vs. true (x-axes) values for resolutions r1, r2 and correlation ρ parameters, and frequency distribution of

individuals completing both stages (bottom right), from 500 simulations with a two-stage quality-conditioned IPLM model with a sample

size of N = 50. For each simulation, the median (green) and the upper (red) and lower (blue) bounds of the 95% credibility interval

obtained from MCMC sampling of the posterior distribution are shown. The one-one line (dashed) is shown for reference.

Figure 2.4. Estimated individual qualities q̂ versus their corresponding true value q, from 500 simulations of a two-stage

quality-conditioned IPLM model with a sample size of N = 50. For each simulation, the median (green) and the upper (red) and lower

(blue) bounds of the 95% credibility interval obtained from MCMC sampling of the posterior distribution are shown for five classes of

individuals: died in stage 1; died in stage 2; censored in stage 1; censored in stage 2; and completed both stages. The one-one line

(dashed) is shown for reference.

These results highlight that quality-conditioned IPLMs can successfully model development and survival in

marked cohort studies. A two-stage study with N = 50 was used here to indicate what can be possible with a

typical data set from a small experiment. Naturally, a greater number of individuals or stages would increase

precision – an important consideration regarding the design of experiments to parameterise eco-evolutionary

models. Most importantly, we show that even when within-stage development is unmeasurable, realistic IPM-
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based matrix models can be fit to maturation-time data.

2.4 Discussion

The lack of a flexible treatment of stage-duration is a recognised limitation of many stage-structured (including

Lefkovitch) models, which in turn affects dynamics and associated demographic indices (e.g. common short-

term and long-term dynamics indicators) (De Valpine et al., 2014). Here we have introduced the integral

projection Lefkovitch matrices (IPLMs), a new tool for modelling the dynamics of stage-structured populations

that, by including within-stage dynamics via integral projection models (IPMs), overcomes this limitation. By

tracking within-stage development, the IPLM greatly reduces stage-duration errors and can provide valid transition

probabilities when stage distributions are non-stable. In spite of the technicalities underlying IPLM models, the

outputs draw on and rest on known methods of classical matrix models and algebra. This, coupled with Bayesian

inference, makes implementation and analysis straightforward and particularly suitable for empirical ecologists

seeking to increase realism of their models, or theoretical ecologists seeking to challenge process models with

data.

The kernel of any IPM-based model must synthesise the net effects of interacting endogenous and exogenous

processes on vital rate heterogeneity. We have shown that IPLMs enable realistic incorporation of unmeasured

local or genetic factors represented by a quality variable. In a similar way, time-varying covariates could be

incorporated to describe exogenous forcing on development (see chapter 3). While the popularity of IPMs has

relied, to a large extent, on the strength and relative ease of using regressions models to parameterise mechanistic

models, we have shown that IPM-kernels can also be estimated via the survival analysis of maturation-time data.

Moreover, by using maturation-time (and not size) data, our methods can greatly improve the precision of stage-

structured IPMs whenever size is a poor, or unavailable, predictor of stage duration. This scenario is ubiquitous in

ecology: egg and exoskeleton dimensions often remain relatively constant, and more appropriate developmental

metrics can be too expensive or difficult to collect routinely. Because many studies of marked individuals provide

not only information of mean stage-duration but also on its variation, we expect many ecological studies will be

able to parameterise realistic variations of the model described here in diverse applications.

Variation in traits characterising development in populations can correlate sojourn-times, affecting growth

rates and other demographic indices. Trait heterogeneity is fundamental to eco-evolutionary models, and static
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traits, such as quality, are often used to condition vital rates (Vindenes and Langangen, 2015). Yet, ecologists lack

tools for tracking many important traits in natural populations (Caswell, 1983; De Valpine et al., 2014). We have

shown how, using Gaussian copulas, unmeasured individual traits can condition IPLM kernels to model correlated

stage-durations. Although we call these individual traits quality, these parameters can be used and interpreted in

various ways: in spatial analyses, quality could be used as a random effect conditioning phenotypic responses of

sub-populations to unmeasured local factors; similarly, quality could provide a group-level random effect when

modelling laboratory data; in eco-evolutionary models, quality can provide a synthetic index of genotypic traits

that affect vital rates and fitness.

We have tested, with a simulation case study, the estimation performance of our methods, showing their ability

to extract valuable information from relatively small sample sizes typical from developmental studies on emergence

or maturation. Moreover, our simulation results show that even when within-stage development is unmeasurable,

quality-dependent IPLMs can be used to incorporate unmeasured local or genetic factors into population models.

While correlations in development violate the Markov process assumption of matrix model projections, IPLMs,

given their nature, overcome this serious limitation, and can thus reduce projection error in studies, such as eco-

evolutionary studies, where variation and developmental correlation are key.

The general IPLM described in this chapter could be adapted to many arthropods (e.g. mosquitoes, biting

midges, tse-tse flies, etc.) as well as to other biological stage-structured population, such as fish or within-host

parasites. For states other than development that structure populations and influence vital rates (e.g. population

attributes such as biomarkers, health states, physiology, morphology, behavior or location, among others (Caswell,

2006)), the IPLM can represent an adequate framework to study key biological features of demography, although

for certain cases (such as populations where multiple transitions or shrinking are to be considered) some effort

would be required to include these complexities. Because many studies of marked individuals provide not only

information on mean stage-duration but also on its variation, we expect many ecological studies will be able to

parameterise realistic variations of the model described here in diverse applications.

2.5 Conclusion

In this chapter, a new matrix model for stage-structured populations (SSPs), the “integral projection Lefkovitch

matrix” (IPLM), has been presented. The IPLM augments a classic Lefkovitch matrix (CLM) with stage- specific
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integral projection models (IPMs) that track within-stage dynamics, in order to improve the characterisation of

variation in development times by tracking individual histories within each stage. The resulting model drastically

reduces stage-duration errors; is robust to stage distribution instabilities arising from perturbations; is flexible

enough to permit parsimonious parameterisation while augmenting significantly the ability yo incorporate diverse

sources of variation (such as random variables); and can be fitted, even when within-stage development is

unmeasurable, using developmental cohort data, in a way that gives access to much of the powerful matrix model

toolbox.

Due to this increased resolution, it is expected that IPLM methods give more accurate estimates and projections

of populations where size is not a good predictor of stage-duration but maturation-time data – even from small

samples – is available or easily obtainable (e.g. egg stage in many organisms or exoskeleton dimensions in

Ecdysozoa). Thus, the IPLM approach is expected to improve the forecast horizon of stage-structured models

in many branches of ecology and evolution. To further investigate this conjecture, we study in the next chapter a

temperature-dependent IPLM that is fitted to laboratory data of our motivating organism, Culicoides biting midges.



Chapter 3

An IPLM-based study of seasonal and

transient dynamics of Culicoides biting midges

In this chapter 1 we explore the impact of temperature changes on the life-history response of a model organism,

biting midges of the genus Culicoides , when within-stage variation is taken into account. For this, we extend

the IPLM model developed in chapter 2 – which provides valid transition probabilities for populations with non-

stable stage distributions (as it is often the case in natural populations) – to include temperature dependence. We

extend the Bayesian inference framework and show how laboratory data on Culicoides development at different

temperatures can be used to fit an IPLM model for studying population dynamics that demonstrates more realistic

dynamics than when developmental heterogeneity is neglected.

3.1 Introduction

Changes in environmental conditions translate into changes in demographic rates, which in turn affect the dynamics

of a population (Coulson et al., 2011). Temperature is recognised as a main – if not the most important –

driver of development in poikilothermic species (i.e. those species whose body temperature follows that of their

environment) of plants and invertebrate animals (Cloudsley-Thompson, 1962; Easterling et al., 2000a). Among

them, many poikilothermic Ecdysozoa (a large and diverse clade of animals that shed exoskeletons including
1Most of the work presented in this chapter is part of an article submitted to the journal Methods in Ecology and Evolution (see Appendix

D).

43
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Arthropoda, Nematoda, and six smaller phyla, totalling over an estimated 4-5 million of species (Aguinaldo

et al., 1997; Telford et al., 2008)) are of economical importance, for different reasons ranging from harvesting

for human consumption to them being agricultural pests or vectors of diseases. Moreover, many of these species

are of importance regarding conservation, and improved dynamic models can help guide conservation strategy

(McElderry, in press) Examples of them are mosquito, nematodes, crustacean, midges and ticks.

Current methods in ecology fail to scale up realistically from laboratory development studies to field

predictions of population dynamics. This is mainly because they do not provide valid transition probabilities

for populations with vital rates sensitive to exogenous sources of variation. For example, arthropods, mites or

nematodes exposed to varying temperatures are rarely modelled using Lefkovitch matrices because these models

do not track stages accurately under time-varying vital rates. Furthermore, while IPM is regularly used to model

the dynamics of wild vertebrate or plant populations, it is rarely used to model Ecdysozoan populations suject

to time-varying parameters. Indeed, for many Ecdysozoa, it can be prohibitively difficult to obtain appropriate

within-stage development data to fit IPMs with time-lagged regression.

Classically, the dynamics of poikilotherms are modelled using degree-day accumulation (DDA), a physiological

unit capturing cumulative metabolic responses to temperature (De Reaumur, 1735; Belehradek, 1935; Russelle

et al., 1984). Maximum likelihood estimators are available for stochastic DDA models (Osawa et al., 1983;

Kemp et al., 1986; Dennis et al., 1986). However, these models neglect mortality, do not yield stage-specific

parameterisation, require developmental homogeneity at time zero, use non-monotonic DDA and, as for most DDA

models, assume a linear temperature–development relationship. Although linearity works over small temperature

ranges, non-linearity becomes important when temperature fluctuations gain amplitude (McMaster and Wilhelm,

1997; Bonhomme, 2000).

Many other approaches with different levels of complexity use DD to describe developmental responses to

temperature. The simplest approaches consist of purely shape descriptive functions with different numbers of

parameters, such as generalised linear models (Manel and Debouzie, 1997), semi Markov processes (Munholland

and Kalbfleisch, 1991), exponential expansion (Logan et al., 1976), circular statistics (Morellato et al., 2010),

non-linear regression models (Briere et al., 1999) and generalised additive models (Hodgson et al., 2011).

More complex non-linear degree-day models have been proposed based on temperature reaction curves of

enzymatic activity (Sharpe and DeMichele, 1977; Schoolfield et al., 1981). This approach has been used
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to include developmental variation and time-varying environments by parameterising individual-based models

(IBMs) (Régnière and Powell, 2013). This framework emphasises the fitting of non-linear expected response

curves and treats variance as a nuisance parameter. Often, proportionality between SDD mean and standard

deviation is assumed (Sharpe and DeMichele, 1977), and the covariates or stochastic processes that generate

variance are neglected. Moreover, proponents neglect that mortality modifies SDDs, and either estimate survival by

neglecting SDD shape and variance (Régnière et al., 2012) or neglect mortality entirely (Yurk and Powell, 2010).

In addition, computational costs can prevent IBMs from scaling well and more general solutions are required.

With IPLM models, SDD variance arises naturally from a stochastic development-mortality process. Furthermore,

the assumptions used for estimation and simulation are identical, thereby eliminating potential bias arising from

model mismatch. It is worth noting that despite similarity with DDA models (Plant and Wilson, 1986; Dennis et al.,

1986; Régnière et al., 2012), the powerful potential of IPMs remains largely untapped in poikilotherm studies.

Here, we fit a temperature-dependent IPLM to unmarked maturation-time data for biting midges of the genus

Culicoides at fixed temperatures. We model IPM-kernel parameters as a function of temperature using non-

parametric regression – the model is fit using biologically justified unimodal constraints, and unimodal spline

interpolation determines parameters at unmeasured temperatures. The interpolated model is used to analyse

asymptotic and transient dynamics under fixed and seasonal temperatures.

3.2 Culicoides IPLM model

Culicoides biting midges attract considerable interest as vectors of numerous viral diseases (Tabachnick, 1996;

Mellor et al., 2000; Guis et al., 2012; Mardulyn et al., 2013; Guichard et al., 2014). Modelling has provided

empirical descriptions of flight-trap data for phenology, bio-geography or epidemiological risk studies (Purse et al.,

2004; Sanders et al., 2011; Searle et al., 2012; Carpenter et al., 2013; Hartemink et al., 2015; Diarra et al., 2015).

But these approaches cannot provide all the vital rates required for incorporating vector life-cycle dynamics in

mechanistic epidemiological models. While insufficient Culicoides within-stage trait data (i.e. size, weight) exists

for time-lagged regression, sufficient maturation-time data exist for fitting a temperature-dependent IPLM.
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Figure 3.1. Schematic representation of a simplified Culicoides life cycle that provides a basis for developing an IPLM. At each time

step: the values PE , PL, PP and PA represent the proportion of individuals remaining in a given stage-class; the values TE , TL and TP
represent the proportion of individuals passing to the next stage-class; and FA represents the per capita fecundity.

Figure 3.1 schematises a typical Culicoides life cycle with nodes representing stage-classes and arrows

denoting transition between stages. This scheme provides the female only egg-larva-pupa-adult (ELPA) IPLM

(adapted from 2.6) that can be written as




E

L

P

A



t

=




WE 0 0 FA

BE WL 0 0

0 BL WP 0

0 0 BP GA



t




E

L

P

A



t−1

, (3.1)

where GA = WA + BA models multiple gonotrophic cycles. Although Culicoides develop through five larval

instars, stage identification is labourious and studies typically only report sojourn time data for the ensemble of

larval substages. However, this loss of resolution is probably negligible since our methods can provide sojourn

time distribution estimates for the ensemble of larval stages.

For species with one reproductive stage that undergo multiple reproductive cycles (e.g. mosquitoes, biting

midges, tse-tse flies), WA can be replaced by GA = WA + BA where BA provides transitions between cycles.

This gives a parsimonious approach that assumes vital rates do not differ significantly between reproductive cycles.

Alternatively, WA could be constructed as a series of multiple sub-matrices and FA adjusted accordingly.

We fitted this model to cohort data from C. variipennis egg, pupae and combined larvae-pupae development

studies (Mullens and Rutz, 1983; Vaughan and Turner, 1987), and to individual-level data from C. nubeculosus

fecundity, gonotrophic cycle and egg stage-duration studies (Balenghien et al., 2016). Details of each data set are

given in Appendix B.2. Note, these species share similar developmental responses across the 15◦C-35◦C range

(Purse et al., 2015).
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Here we use the same notation for stage-specific IPM-kernels developed in chapter 2. For each stage,

temperature-dependence was modelled using unimodal splines on survival ν(T ), the 1st and 99th percentiles

(P1(T ) and P99(T )) of the developmental rate distribution f∆(∆|α), and (for adults) fecundity FA(T ). For this,

unimodality constraints on the responses to temperature of these parameters were incorporated into the MCMC.

The unimodality constraints ensure an optimal temperature for each stage (Sharpe and DeMichele, 1977; Knies and

Kingsolver, 2010; Régnière et al., 2012) and permit shape-constrained interpolation at unsampled temperatures.

Interpolation was performed, for each line of MCMC output, using unimodal cubic Hermite splines (Appendix

B.7 ). This non-parameteric regression produces a smoothed unimodal curve analogous to (the piece-wise linear)

multivariate adaptive regression splines (Friedman, 1991). Note, the spline modelling for ∆ was performed on

percentiles rather than µ and κ in order to enforce a unimodal response to temperature. Only two percentiles were

needed to identify µ and κ and the 1st and 99th proved a practical choice.

Estimation. Details of likelihoods used for model fitting, including fecundity, are given in Appendices B.3 and

B.3.1, while missing-value imputation steps are given in Appendix B.4. Posteriors were sampled using parallel

tempering (Swendsen and Wang, 1986; Łącki and Miasojedow, 2015) (Appendix B.5), and performed in NIMBLE

(NIMBLE and R scripts used in these analyses are available on github https://github.com/scastano/IPLM_code).

Ten thousand thinned post-adaption MCMC samples were generated and convergence diagnostics were performed

using CODA (details in Appendix B.6). Estimates of µ(T ) and κ(T ) were obtained via back-transformation of the

interpolated P01(T ) and P99S(T ) (Appendix B.7).

3.3 Results

Resolution.

Posterior likelihoods were consistently poor at rS = 1, whereafter small resolution increases provided large

likelihood gains, rendering the CLM’s posterior probability negligible (Fig. 3.2). Maximum a posteriori (MAP)

estimates for resolution were r(MAP)
E

= 6, r(MAP)
L

= 9, r(MAP)
P

= 31 and r(MAP)
A

= 8, with variable levels of uncertainty.

The reason for these large likelihood gains is clear when comparing the model fit to maturation time data: the

CLM’s geometric sojourn-time distributions do not fit the data well while IPLM improves fitted sojourn-time

distributions in all cases (Figs. 3.3, 3.4).
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Figure 3.2. Posterior log likelihood profiles with respect to resolution (top) and the distribution of estimates for each resolution

(bottom) for an IPLM model with egg, larvae, pupae and adult stages fitted to Culicoides biting midge data. Boxplots (top left) summarise

the distribution of posterior log likelihoods and the wireplot (right) shows mean posterior log likelihoods (MPLL) calculated from 104

MCMC samples per resolution or combination. Maximum a posteriori (MAP) estimates were found at rE = 6, rL = 9, rP = 31,

rG = 8 (subscript G indicates the gonotrophic cycle that followed by adult females) and posterior probabilities associated with the lowest

resolutions were negligible.
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Figure 3.3. Posterior cumulative distributions of within-stage sojourn times of a temperature-dependent IPLM plotted with empirical

Culicoides data (red lines). Where two data sets are shown, continuous red lines indicate Mullens et al. data, and dashed red lines indicate

Vaughan et al. data. The fitted sojourn time distributions contrast markedly to those obtained with CLM (see Fig. 3.4).
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Figure 3.4. Posterior cumulative distributions of within-stage sojourn times of a temperature-dependent CLM plotted with empirical

Culicoides data (red lines). Where two data sets are shown, continuous red lines indicate Mullens et al. data, and dashed red lines indicate

Vaughan et al. data. The fitted sojourn time distributions contrast markedly to those obtained with IPLM (see Fig.3.3).

Differential Responses to Temperature.

Stages differed in their developmental responses to temperature (Figs. 3.5, 3.6). Generally, the mean and

variance of developmental rates increased with temperature. However, eggs, and to a lesser extent larvae and

pupae, exhibited impaired development. Larvae showed a more flat developmental rate, with values substantially

lower than the other stages at most of temperatures considered.
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Figure 3.5. Non-linear responses to temperature of development (top) and survival (bottom) at most likely resolutions (rMAP
E = 6,

rMAP
L = 9, rMAP

P = 31, rMAP
G = 8) for egg, larvae, pupae and adult midges. Results from 1000 MCMC samples are plotted with

unimodal spline interpolation. Experimental temperatures are indicated with dashed vertical grey lines. Red and blue lines show median

and 1% tail percentiles (P01,P99) of development kernel f(∆|θ) (top row). Expected values (black line) and 95% credibility intervals for

each parameter are shown (dashed lines).

Survival was low at the highest temperatures for eggs, pupae and adults. Larvae experienced relatively high

survival at all temperatures and were the most resistant stage to cold – this concurs with field reports of over-

wintering success being greatest for larvae (Kettle, 1962; De Liberato et al., 2003). Despite these differential

temperature effects, the stable stage distribution (dominant eigenvector) did not exhibit clear visual evidence of

strong temperature-dependence within the range of experimental temperatures (Fig. 3.7).
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Figure 3.6. Expected fecundity from a Poisson-Jeffreys model fitted to Culicoides oviposition data collected at three temperatures

(vertical grey lines). Posterior estimates from 1000 MCMC samples are shown with extrapolation over the range 10◦ − 35◦C. The data

suggest a non-linear response of fecundity to temperature.

Figure 3.7. Stable stage distributions at several temperatures for Culicoides CLM (left) and IPLM (right) models. Results from 1000

MCMC samples (red lines) with posterior means and 95% CIs (black lines) are shown. For the IPLM model, resolutions were set to their

maximum a posteriori (MAP) estimates: rMAP
E = 6, rMAP

L = 9, rMAP
P = 31 and rMAP

A = 8. Vertical lines separate stages.

Asymptotic dynamics at fixed temperatures.

The asymptotic growth rate (dominant eigenvalue λ1) over a 10◦C-40◦C range was similar for CLM and

IPLM: both suggested temperatures in the mid-twenties optimise growth, although CLM systematically predicted

slightly higher growth rates than IPLM (Fig. 3.8). Both models predicted population decline (λ1 < 1) at high
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temperatures. Both the range of temperatures yielding λ1 > 1, and uncertainties regarding growth–decline

threshold temperatures, were greater for CLM than for IPLM.

Figure 3.8. Temperature responses of asymptotic growth rate (dominant eigenvalue, λ1) of CLM (left) and IPLM (center). Expected

growth rates were higher for CLM than for IPLM over much of the temperature range, and the 95% CIs for this difference excluded zero

over a range of approximately 22◦C − 26◦C (right). Both models predict population decline (λ1 < 1) at higher temperatures. However,

CLM predicted λ1 > 1 over a greater range of temperatures than IPLM. Expected values (black line) with 95% CIs (dashed lines) from

1000 MCMC samples (red lines) are shown.

Transient dynamics.

To investigate potential effects of temperature perturbations, various indices of transient dynamics were

quantified (Caswell, 2006; Koons et al., 2007; Stott et al., 2011). The duration of transient dynamics is largely

determined by the damping ratio of first and second eigenvalues ρ = λ1/|λ2|, which represents the rate at which

population approaches to the stable distribution. Plots of ρ−t indicated slower convergence for IPLM than for CLM

at all temperatures (Fig. 3.9). Thus, the relative importance of λ2 increased when within-stage developmental

heterogeneity was included, and CLM underestimated the duration of transients at every temperature.

The relative density (density(t)/λ1) exhibited stronger evidence of transient oscillations for IPLM than for

CLM. Maximum amplification (ampmax) and maximum attenuation (attmax) provide the largest ans smallest

possible values of relative density following perturbation at t = 0, while and associated inertias provide the

asymptotic values of ampmax and attmax. Each of these indices was affected when within-stage developmental

heterogeneity was excluded, and CLM consistently underestimated the amplitude of transient oscillations (Fig.

3.9).



54

Figure 3.9. Indices of transient dynamics for Culicoides CLM and IPLM models at fixed temperatures. Geometric projections of

inverted damping ratios (ρ = λ1/|λ2|) from 1000 MCMC samples (red lines), their means (black line) and 95% credibility intervals

(dashed lines) show CLM consistently underestimated the potential duration of transient oscillations (first and second rows). These effects

are clear in projected trajectories of relative densities (blue lines, third and forth rows), in all cases initial values were set to the 10◦C

stable stage distribution. Maximum amplification, maximum attenuation (upper and lower red lines respectively) and associated inertias

(green lines) are shown.

Seasonal dynamics.

The effects of within-stage variation on seasonal dynamics were explored by plotting daily growth rates λt,

projected relative densities (density divided by annual growth λY ), ampmax and attmax over two years for both the
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CLM and IPLM. Two similar seasonal temperature profiles were modelled as

Tt = v + w cos
(
t

2π

365

)
, (3.2)

where v and w were set such that min(Tt) = {15◦C} and max(Tt) = {25◦, 30◦C, }, with t = 0 the coldest day

of the year. For projections of relative density, the initial population was set to the stable distribution associated

with 15◦C.

For both temperature regimes, the amplitude of annual oscillations in λ1 and relative density were greater for

CLM than IPLM (Fig. 3.10). Raising max(Tt) to 30◦ reduced both precision in λ1 and the probability of λ1 > 1

in mid-summer (Fig. 3.10). This switch from summertime growth to decline arose from high uncertainty in adult

survival at 30◦C. Trajectories of ampmax and attmax were more complex for IPLM in both seasonal temperature

scenarios, and exhibited spring-time oscillations in the first year that became relatively damped by the second year.

This damping suggests that, with the chosen temperature profile, spring-time flux in the stable stage distribution is

mild.
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Figure 3.10. Growth rate (λ1) and standardised density projections for Culicoides CLM (left) and IPLM (right) models forced with

annual temperature fluctuations with ranges 15◦C-25◦C (top) and 15◦C-30◦C (bottom). The amplitude of λ1 oscillations was greater for

CLM than for IPLM. Uncertainty in λ1 increased when mid-summer temperatures were increased from 25◦C to 30◦C. Maximum

amplification and maximum attenuation trajectories (upper and lower red lines) were more complex for IPLM than CLM and exhibited

clear spring-time oscillations characteristic of transient dynamics in the first year. Relative density projections were initialised at the 15◦C

stable stage distribution and standardised using annual growth λY (blue lines). These trajectories only showed mild evidence of transient

dynamics and few between-year differences indicating that these initial conditions generated negligible perturbation. Results from 1000

MCMC samples are shown.



57

3.4 Discussion

Here we have applied the integral projection Lefkovitch matrix (IPLM) framework to model the dynamics of

Culicoides biting midges in order to provide an example of adapting IPLMs to a poikilothermic stage-structured

population. We have shown that stage-specific vital rates, and related metrics, can be parameterised via non-linear

responses to fixed or time-varying covariates to yield more realistic sojourn-mortality distributions. Moreover, by

their structure, IPLMs can provide valid transition probabilities when stage distributions are non-stable, reduce

errors in transient and/or non-linear dynamics and can therefore be expected to improve predictive performance

when exogenous factors differentially affect vital rates.

In our Culicoides analyses, neglecting within-stage heterogeneity generated a small but systematic bias

favouring over-estimation of growth rates (λ1) and the probability of λ1 > 1. Thus, neglecting within-stage

heterogeneity can apparently affect predictions of potential ecological niche. It is increasingly recognised that

perturbations and transient dynamics can be as important as asymptotic dynamics (Bierzychudek, 1999; Cushing

et al., 2002; Crone et al., 2013). Neglecting within-stage heterogeneity led to underestimation of the duration

and amplitude of transient oscillations, the potential range of relative densities (attmax, ampmax) and associated

inertias. Whereas the 4× 4 CLM yields just one pair of complex eigenvalues, the larger IPLM yields many more

complex eigenvalues giving a richer characterisation of the transient oscillations that follow perturbation. The

Culicoides analyses suggest that, for the chosen temperature profile – wich possesses a smooth day-to-day change

in temperature and mild extreme temperatures – , the importance of transient dynamics relative to asymptotic

dynamics is small. Despite vital rates responding differentially to temperature, the perturbations generated by the

chosen temperature profile only generate low-amplitude transient oscillations. However, the amplitude of transient

oscillations is expected to increase as winter-summer, or day-to-day, temperature differences increase since cold

winters exert strong differential mortality. Moreover, this unexpected result appears to arise as an artefact of using

a linear (density independent) dynamic model. In chapter 4 we show that adding density dependence leads to an

important role of transient dynamics that do not damper with time throughout the season. These effects can have

important consequences in wildlife management and other branches of ecology and evolution where perturbations

limit the forecasting horizon of current methods. Temperature transfer experiments (Régnière et al., 2012) are

required to test this hypothesis.

As far as we know, our Culicoides analysis is the first time an IPM-based approach has been adapted to analyse
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temperature effects on the within-stage development, transient dynamics and phenology of a poikilothermic

arthropod. Although tracking within-stage development with temperature-dependent IPMs is analogous to

tracking degree-day accumulation (Plant and Wilson, 1986), IPMs and degree-day accumulation models have

hitherto evolved in relative isolation. The use of IPLMs in the Culicoides study bridges a historic gap between

these schools of ecological modelling, overcomes many of the limitations of the pioneering work of Dennis

et al. (1986), and avoids popular linearity assumptions – which are unrealistic over large temperature ranges.

The IPLM framework readily accommodates stage-specific non-linear responses to temperature. We modelled

these responses at unmeasured temperatures using spline interpolation subject to biologically justified unimodal

constraints. Alternatively, mechanistic link functions based on metabolic theory (Régnière et al., 2012) could have

been used. This would have provided smoother development–temperature response curves, however, our non-

parameteric approach provided greater parsimony in the Culicoides study. The model’s relative simplicity, and

ability to exploit diverse date types, suggest that IPLM provides a valuable tool for modelling not only arthropods

but many stage-structured populations.

An IPLM model is both an augmented matrix model and a discrete IPM approximation. Discretisation

unavoidably introduces resolution parameters r with no biological meaning. The simulation results of chapter 2

suggested that, provided r is large enough, model fit can be relatively insensitive to r. By contrast, the Culicoides

study showes that the degree of sensitivity of likelihoods to r is data dependent. Indeed, at low values, r functions

as a shape parameter, suggesting that more flexible kernels should reduce sensitivity to r. Modelling development

rate heterogeneity with beta distributions allowed us to demonstrate how the likelihoods of CLMs are greatly

increased with just a few additional parameters. But we do not expect this distribution to be optimal in all

situations, thus identifying and testing alternatives merits further research. Possible alternatives include probability

distributions with more parameters and non-parameteric or semi-parameteric methods. It may even be possible to

invert the estimation problem by fitting stage-duration distributions to data via classical survival analysis and solve

to obtain a corresponding IPM-kernel. However, we do not know an analytic solution to this inverse problem, nor

do we know of numerical solutions that could be more efficient than the projection approach adopted here.

Here we have focussed on temperature effects since temperature is the most fundamental covariate to affect

poikilothermic dynamics. However, other covariariates can be important and further research is required to

generalise these methods for other taxa. For example, adult Amblyoma ticks exhibit a behavioural diapause in
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their host-seeking behaviour during dry periods, an adaptative behaviour that minimises egg and larva mortality

(Pegram et al., 1988; Labruna et al., 2003). Similarly, the eggs of Aedes albopictus and Aedes aegiptis are known

to be highly resistant to dessication and can survive dry conditions for over one year (Bentley and Day, 1989;

Bonizzoni et al., 2013). Clearly, for approximating such effects, extra covariates are required in the definition of

the IPLM kernel. But since IPM kernel definitions can be highly flexible, the approach should easily be adapted to

these scenarios.

Other alternative data sources might be incorporated into model fitting. For example, time series from

field studies could be used to reduce parameter uncertainty beyond the range of experimental conditions. A

related problem to addressing this improvement of IPLMs is how to upscale from laboratory studies (with single

generations) to field scenarios (with overlapping generations), and how to fit IPLMs to time series which typically

just provide partial observations of incomplete life cycles. A Bayesian approach where the analysis of laboratory

data affords informative priors for modelling field data would provide ecologists a very powerful tool to improve

the forecast horizon of matrix models. In chapter 4, a preliminary study towards the development of generic

methods for fitting IPLM models to such time series is presented.

3.5 Conclusion

In this chapter we have extended IPLM methods to include non-linear temperature-dependence in the developmental

times and mortality rates of a stage-structured population. Fitting the model to Culicoides (biting midge)

unmarked laboratory cohort data enabled an assessment of the relative roles of transient and asymptotic dynamics

in constant and seasonal climates by comparing outputs of the IPLM model to the classic Lefkovitch matrix

(i.e. the matrix model that neglects within-stage heterogeneity). We have shown the traditional negligence of

individual developmental heterogeneity affects asymptotic dynamic metrics in various ways and, moreover, greatly

underestimates the importance (both amplitude and duration) of transient dynamics.

The IPLM framework permits the tracking of within-stage heterogeneity that arises from covariates without

recourse to overparameterisation or unrealistic variance assumptions. Moreover, as shown here, much of the

machinery of matrix model analysis is available including indices of asymptotic and transient dynamics. It is also

perfectly feasible that sensitivities and elasticities of these indices to perturbation in parameters can be derived

from the matrices using well known methods (Caswell, 2006), although we do not explore this possibility here.



60

Further research is required to explore the incorporation of additional covariates such as rainfall or soil

moisture, that can be important for other taxa. Results presented in this chapter are only first step towards

understanding the effects of within-stage variation on life histories on natural stage-structured populations.

However, field populations are subject to sources of variation not considered here such as environmental

stochasticity and density dependence. The incorporation of these factors and the methodological challenges to

estimate associated parameters from field data are explored in the second part of the next chapter.
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3.6 Annexe. Analysing linear assumption of degree-day approaches.

Degree-days (DDs) is a unit that measures the energy available for driving development processes per unit time

(days in general) (De Reaumur, 1735; Russelle et al., 1984; Higley et al., 1986). The cummulative degree-days

(CDDs) – or thermal time – synthetises the integrated effect of temperature on the many individual physiological

processes involved during the time taken for the development of poikilothermic species (Plant and Wilson, 1986;

Bonhomme, 2000). In the IPLM approach, progress by discrete increments ∆ tracks development as a non-linear

function of temperature and enables one to reconstruct cumulative maturation time distributions (Fig. 3.3), which

is analogous to tracking non-linear responses to CDDs.

Degree-day based development studies have been a valuable tool in the quantitative analysis of plant, pest

and crop phenology in agricultural sciences (Taylor, 1981; Higley et al., 1986; Gu and Novak, 2006; Merrill

et al., 2010; Evans et al., 2014; Lewis et al., 2015) – for example CDD has been used to estimate the timing of

relevant biological events that determine the timing and impacts of crop pest outbreaks. Traditional DD-based

models assume a linear relationship between temperature and development rate, and impose the definition of a

base temperature Tb under which individuals are assumed not to develop. This approach is highly popular due to

its simplicity, but several authors have suggested this assumption only provides accurate approximation over small

temperature ranges and can be erroneous when modelling the developmental responses of organisms under large

temperature variations (McMaster and Wilhelm, 1997; Bonhomme, 2000). In general, the errors of this approach

will be magnified whenever non-linearity in developmental rate curves becomes non-negligible, as can be the case

in temperature regimes with a wide diurnal range. Some approaches that attempt to overcome this limitation (e.g.

Osawa et al. (1983); Logan et al. (1976); Dennis et al. (1986); Régnière and Powell (2013)) were described in

section 3.1.

Here we investigate the validity of the linearity assumption of DD models by using CDD estimates obtained

from the Culicoides IPLM model. To do this, we first plot the cummulative distribution function (CDF) of the CDD

required to complete each stage at each experimental temperature using the fitted IPLM model – this was done for

a range of values of Tb in 0◦C − 14◦C. Under linearity, these CDFs at each temperature should be identical, thus

we select the Tb that minimises the distance between these CDFs to maximise the evidence for linearity per stage.

Finally, with Tb fixed, we plot uncertainty in the expected CDD required to develop from egg to the completion

of a first gonotrophic cycle. This is done over all temperatures, to evaluate if the thermal requirements for this
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development are independent of temperature (as predicted by the linearity hypothesis) or not. Details of these

steps are described below.

Methods. Daily degree-days, DD(t), is typically obtained by employing some variant of the canonical

expression DD(t) =
(Tmax
t +Tmin

t )
2 −Tb , where Tb is the threshold temperature for development, and Tmin

t and Tmax
t

(both assumed to be greater than Tb, otherwise DD(t) = 0) are the daily minimum and maximum temperature

recorded at day t. If development takes t days, the corresponding cummulative degree-day required is

CDD(t) =

t∑

τ=1

DD(τ). (3.3)

At a fixed temperature T , equation (3.3) reduces to

CDD(t) = tH(T − Tb), (3.4)

with H the Heaviside step function.

Naturally, uncertainty of Culicoides IPLM estimates is lowest at (the fixed) experimental temperatures Te (see

table B.1). At these temperatures, we re-scaled (from 1000 MCMC samples) the estimated CDFs of maturation

times to CDFs of thermal times by using equation (3.4) for a set of plausible Tb in the range {0◦C, 14◦C} (step

size = 0.1). This range was taken based on literature and the data we had (i.e. clearly Tb < 15◦C). We define

a distance metric, dl, that for a given Tb, sums the distance between the estimated CDFs of thermal time across

empirical temperatures Te for sample l,

dl(Tb) =
∑

i∈Te

∑

j∈Te,j 6=i

1

2

∫ ∞

0

∣∣F (l)
i (CDD)− F (l)

j (CDD)
∣∣dCDD, (3.5)

where F (l) is the CDF of thermal time obtained using estimate set associated to sample l. Note, the total distance

D (for N MCMC samples) is just D(Tb) =
∑N

l=1 dl(Tb). We determined T̂b, the “optimal” Tb as the one that

minimises distance D, which in other words, is the Tb that maximises the evidence of linearity found in data.

Once T̂b had been identified for each stage, the expected CDD (ECDD) required to complete the four stages

was calculated, from the CDF for thermal time (as used above) associated with Tb and each experimental

temperature. Note, for adults, only time to completion of the first gonotrophic cycle (hereafter named GC1) was

considered. Plots of these expected thermal times (per temperature) were then assessed for evidence of linearity
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i.e. independence from temperature T . The ECDD for completing all four stages was also obtained.

Results. Minimising the total distance D (between CDFs of thermal time for stage completion at each

experimental temperature) enabled T̂b to be determined for every stage (Fig. 3.11). For egg, larval and pupal

stages, our estimates of T̂b were within the ranges of Tb reported in published works on Culicoides variippennis

from which most of our data comes from (table 3.1). The expected thermal time (ECDD) for egg, larva, pupa,

and GC1 completion showed that DD requirements are not independent of temperature (Fig. 3.12). Similarly, the

ECDD required to develop from egg to GC1 completion is also not independent of temperature (Fig. 3.13).
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Figure 3.11. For every stage, a threshold temperature for development, Tb, was explored among values in the set

{0◦C, 0.1◦C, . . . , 14◦C} by minimising an auxiliar metric, total distance D, between the CDFs of CDD requirements for stage

completion of different fixed experimental temperatures. Here, D is shown on the logaritmic scale. Optimised values (red bars)which

maximise the evidence for linearity were TE
b = 10.0◦C, TL

b = 8.5◦C, TL
b = 11.3◦C, TL

b = 10.6◦C. For adults, maturation times for

the first gonotrophic cycle only were considered.

Stage
Tb (◦C)

Mullens et al. (1983) Vaughan et al. (1987) IPLM
E 9.8 - 10.0
L 10.7 7.5 8.5
P 10.6 11.7† 11.3

1st GC - - 10.6

Table 3.1. A comparison of base temperature (Tb) estimates published in the literature and estimated in the current work. † Data at

35◦C not included for estimation of Tb by (Vaughan and Turner, 1987).

In Fig. 3.12, we can see that thermal requirement for larva development is much higher than for the other

stages, and egg and pupa exhibit lower thermal requirements. For egg, larva and pupa, the ranges where linearity

is valid do not exceed (roughly) a length of seven ◦C units. For adults, the evidence of non-linearity is weaker,

although care must be taken given the high uncertainty at higher temperatures. Eggs and larvae show a clear

optimal developmental temperature (around 20◦C and 23◦C respectively), associated to lower developmental
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requirements. For pupae, the requirement is lowest at lower temperatures.
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Figure 3.12. Expected cumulative degree-days (ECDD) requirements for stage completion from 1000 samples of MCMC are shown

(red lines). For adult Culicoides , only time to completion of first gonotrophic cycle is considered. Median (continuous line) and 95% CI

(dashed lines) are shown. The developmental threshold Tb used for every stage was identified in Fig. 3.11. Vertical lines are a reference to

experimental temperatures.
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Figure 3.13. Expected cumulative degree-days (ECDD) requirement for Culicoides development from egg to completion of the first

gonotrophic cycle (red lines). The developmental threshold Tb used for every stage was identified in Fig. 3.11. Median (continuous line)

and 95% CI (dashed lines) of 1000 MCMC samples are shown. Vertical lines are a reference to experimental temperatures.

Discussion. Estimated maturation times from the Culicoides IPLM model enabled us to test linearity

assumption underlying most degree-day development models. We found strong evidence of non-linearity between

development and temperature, confirming that inferences based on linear DD approaches can be inaccurate in the

face of typical temperature ranges encountered in field studies.

A striking similarity between the ECDD for larva and ECDD for development from egg to GC1 completion

highlights the importance of the larva stage regarding the generation time of Culicoides . Little is known about

the larval stages of most of Culicoides species of epidemiological interest and these results provide important

information that could be used for motivating further studies on larva development or assessing vector control

strategies focused on the use of larvicides.

Diapause (a metabolic status by which organisms reduce activity in order to survive environmental unfavorable

periods) has been suggested to facilitate overwintering among Culicoides larvae in temperate regions. Some

entomologists have speculated that photoperiod could be a main trigger for diapause onset, while temperature most

likely trigger the end of diapause (Carpenter, personal communication). Most DD-based models, including the

Culicoides IPLM, ignore life-history aspects that are not essentially driven by temperature, such as a photoperiod

triggered onset of diapause. Thus, although of recognised utility, these DD-based approaches are limited when

aiming predict or monitor thermal time for populations undergoing diapause. Although our approach could be

extended to include diapause as another stage, we did not explore this possibility due to a paucity of data.
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In addition to temperature, food availability and larval density are known to affect Culicoides larval

development (Mellor et al., 2000). Therefore, DD requirements for stage completion estimated from laboratory

experiments that do not consider these factors might be biased when extended to applications in the field. In section

4.2 we describe how easily density-dependence and environmental stochasticity can be incorporated into the IPLM

framework and make some preliminary studies regarding the identifiability of these parameters using simulated

field data.

Conclusion. Analysis of the temperature-dependent Culicoides IPLM model demonstrates that the traditional

assumption of a linear relationship between cummulative degree-day and development rate does not hold outside

the bounds of a narrow range of mild temperatures. We have shown that IPLM methods provide a simple

framework that readily accounts for non-linearity in the temperature effects on vital rates. The flexibility of the

IPLM to incorporate non-linear responses of vital rates to covariates is an important feature that bolsters the utility

of these methods for applied purposes such as conservation or pest / vector control.



Chapter 4

Extending the utility of the IPLM framework

In chapter 4, two potential research lines are explored by using the Culicoides IPLM of chapter 3. First, projections

of Culicoides adult densities were used to analyse temporal variation in the R0 of bluetongue following an

induced reduction in adult survival. We show that generation time, determined by how temperature drives the

Culicoides life-cycle, affects the efficiency of vector control to reduce or halt bluetongue transmission and we

outline implications for integrated vector management.

Secondly, I explore methods for upscaling to natural scenarios by using IPLMs in a state-space model with a

view to making inference from field data (e.g. adult time series). For this, density-dependence and environmental

noise are included in the IPLM model and combined with a noisy observation process. In a preliminary study with

simulated data, I explore a potential method for inference that uses a recent simulation-based approach (synthetic

likelihood, Wood (2010)). The results indicate that, under certain conditions, these techniques are capable of

identifying the strength of population regulation and environmental stochasticity from vector surveillance data.

Methodological challenges and potential avenues for future research are outlined.

67



68

4.1 Estimating the effects of vector control on the R0 of bluetongue

4.1.1 Introduction

In epidemiology, the basic reproduction ratio (or number) R0, the number of secondary infections arising from the

introduction of one primary infectious individual in a susceptible population, is a common index used to analyse

the potential of disease invasion (Murray, 2002; Heffernan et al., 2005). A disease is expected to increase in

frequency among a host population only if R0 > 1, thus R0 is a measure to asses the risk a disease poses to a

population.

A few works have derived the R0 for bluetongue virus (BTV) transmission from mechanistic models (Gubbins

et al., 2008; Hartemink et al., 2009; Guis et al., 2012; Turner et al., 2013). These models have studied the effects

of different (biotic and abiotic) factors and assumptions underlying this index, as well as the epidemiological

consequences of manipulating such factors. For example, in Guis et al. (2012), the authors use R0 to assess

the effects of climate change on the risk of BTV emergence across Europe by including high-resolution climate

projection (up to 2050) scenarios, while in Turner et al. (2013), the effects on R0 of differences in vector

abundance, competence, host preference and species (C. pulicaris and C. obsoletus groups) in South Africa have

been analysed.

In Gubbins et al. (2008), the authors obtain an expression for R0 by using next generation methods from a

system of ordinary differential equations that model BTV transmission in a mixed population of cattle and sheep.

Their models consists of susceptible (i.e. uninfected), infected and recovered hosts; and susceptible, latent (i.e.

infected, but not infectious) and infectious vectors. The R0 expression they obtain is

R0 =

√
bβa2

µ

γ

µ+ γ

(
mcϕ2

rc + dc
+
ms(1− ϕ)2

rs + ds

)
, (4.1)

where b is the probability of transmission from vector to host, β the probability of transmission from host to vector,

a the biting rate, µ the vector (adult) mortality rate, 1/γ the mean extrinsic incubation period, m the vector-to-

host ratio (i.e. m = A/H , with A and H accounting for (adult) vector and host densities respectively), ϕ the

proportion of bites on cattle, 1/r the duration of viraemia and 1/d the disease-induced mortality rate. Sub-indices

c and s refer to cattle and sheep, the only hosts considered in the model. This expression assumes the duration of

viraemia in hosts (cattle and sheep), the extrinsic incubation period and vector (adult) longevity follow exponential
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distributions.

Some of the parameters involved in expression 4.1 can be manipulated via vector control practices. Vector

control responses include use of insecticides or pathogens to (or direct removal of) larval breeding sites; application

of insecticides on host animals or resting sites targeting adults; use of repellents or housing livestock to reduce

contact; and use of host kairomones to lure and kill adult midges (Carpenter et al., 2008). However, current

knowledge of the ecology (e.g. breeding sites) and behaviour (e.g. host-seeking and resting behavior) of midges

do is too limited to permit quantitative prediction of the success of vector control interventions that aim to reduce

the spread of BTV.

Limited knowledge on breeding habits, combined with undesirable consequences in the use of larvicides

(e.g. cross-resistance in larval population, difficulty achieving adequate coverage, potential impact on aquatic

invertebrates and increasing environmental concerns (Clements and Rogers, 1968)) have increased interest in

alternative methods that target Culicoides adults. Adult control methods either studied or applied in the field

include insecticide-treated livestock (the main method used in Europe for BTV), insecticid-treated screens,

environmental spraying (e.g. Linley and Jordan (1992) reported mortality increased up to 90% in field studies

with C. furens exposed to different adulticides), removal trapping methods (e.g. trap s baited with carbon dioxide

and octenol) and biocontrol agents (e.g. fungicides) (Carpenter et al., 2008; Ansari et al., 2011). Because biting

midges are relatively poor flyers (in general dispersion is lower than two miles from original breeding site (Lillie

et al., 1985)), control targeting adults can, in theory, quickly reduce local biting populations.

4.1.2 Methods

The aim here is to provide preliminary insights into the relative effectiveness of an adult-density reduction strategy

to reduce the transmission risk of BTV. Specifically, we explore the effects of a sudden antropogenically induced

reduction in adult survival – as could be the goal of Culicoides control with adulticides – on the associated R0.

For this, we adapt and simplify expression 4.1 by assuming that ms = mc = m, and integrate adult density

projections from the Culicoides IPLM model (chapter 3). The intervention reduces the daily probability of adult

survival ν to νc = αν, with 0 < α < 1. We compute at a series of times t following the initialisation of vector

control (t = 0, 1, 2, . . . ), changes in the temperature-dependent basic reproductive ratio,Rc0(t), relative to its value

immediately prior to starting vector control intervention, R0.
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We assume the vector population grows according to the IPLM model and we neglect density dependence. As

a consequence of the hypothetical control program, the vector (i.e. adult) mortality rate becomes µc > µ, while

the vector-host ratio is mc = Ac/H , with Ac being the adult population under control measures. We assume

(realistically) that host density H is constant. Using these values in the expression for R0 (equation 4.1), and

taking the ratio rT (t) = Rc0(t)/R0, we obtain

rT (t) =

√
µ(µ+ γT )

µc(µc + γT )

Ac(t)

A0
, (4.2)

where A0 is assumed to be the adult population associated to ν (prior to vector control), T is temperature and the

extrinsic incubation period γT is a monotonically increasing function of T , γT = 0.0003 × T × (T − 10.4057),

taken from Mullens et al. (2004). Assuming density-independent mortality among adults, the mortality rate µ of

expression 4.1 relates to daily survival ν of the Culicoides IPLM model via the identity

µ = log
(1

ν

)
. (4.3)

Note, since the principal source of density-dependence in survival is often considered to affect immature stages,

neglecting density dependence in this step is not expected to be an important source of bias for calculating µ.

We investigate the effects of reducing adult survival by a constant reduction factor α. For every α ∈

{ 1
50 ,

2
50 ,

3
50 , . . . , 1}, the dynamics of a Culicoides population are projected, at fixed temperatures, and the ratio

rT (t) is evaluated at each (daily) time-step during 15 weeks. Average daily estimates of rT (t) are obtained

for IPLM parameters obtained from 1000 lines of MCMC output (see section 3.3). Temperatures were fixed

at T ∈ {15◦C, 20◦C, 25◦C}; these temperatures were chosen because 1) they cover a range where the uncertainty

of the Culicoides IPLM model is relatively low (fig 3.5); and 2) R0 estimates had previously been published at

these temperatures. For every projection, the initial population was set to its stable stage distribution in the absence

of control.

Various estimates of the R0 of the BTV transmission are available in the literature (Gubbins et al., 2008;

Hartemink et al., 2009; Guis et al., 2012; Turner et al., 2013). We consider two of them for aiding these analyses

(table 4.1) while the remaining are addressed in discussion section. These works provide a rough range ofR0 from

which we take the values R0 ∈ {2, 3, 4} to analyse our results.



71

Temperature Author
15◦C 20◦C 25◦C

R0
1.4-3.1 1.6-3.6 0.9-2.4 Gubbins et al. (2008)
2.53 2.7 Turner et al. (2013)

Table 4.1. Available estimates of R0 for BTV at 3 temperatures from published literature.

4.1.3 Results

The effects of the different values of α on rT (t) trajectories were plotted for each temperature considered (Fig

4.1). In all cases, control effects (i.e. changing ν to νc) caused a large initial reduction in Rc0(0). The non-

linear relationship between α and rT (expressions 4.2 and 4.5) is observed at t = 0 for the different proportional

decreasing α-values (gray gradient bars) considered. Large reductions in Rc0(0) were possible at 15◦C with

relatively modest control efforts, while at higher temperatures this effect was attenuated. For example, rT (0) = 0.5

was possible at 15◦C with α ' 0.9, whereas α ' 0.8 was required at 25◦C.

In general, oscillations are observed. These oscillations are associated to transient dynamics in adult

populations following the sudden change of adult survival. If control is weak (α ' 1), rT trajectories indicate

that after the initial reduction, Rc0 consistently increases at all considered temperatures. As α decreases (i.e. adult

survival νc decreases), oscillations are characterised by an initial decline in rT . The duration of this initial decline

is temperature dependent and is linked to the expected generation times of the IPLM. After the initial decline, the

trend in rT is to either increase (for relatively high α values) or decrease (for α less than some threshold).

The values of α such that rT (0) is approximately 1
2 , 1

3 and 1
4 were identified in red, pink and blue respectively

in the legends of figure 4.1. Trajectories obtained for corresponding values of α were indicated in solid lines

following the same color code. If R0 was initially R0 = 2, R0 = 3 or R0 = 4 respectively, these values of

α would correspond to the epidemiologically important threshold Rc0(0) = 1. Horizontal dotted lines compare

trajectories in rT (t) to Rc0(t = 0) in these cases.

Colored curves represent trajectories of rT (t) associated with the largest value of α that reduces an initial R0

of 2, 3 or 4 to Rc0(0) < 1. These trajectories indicate that the effects of initially achieving Rc0(0) < 1 can be

lost in many cases if the vector population is free to grow (λ1 > 1) during the control program. For example, at

15◦C and R0 = 2, α = 0.92 predicts BT decline (i.e. Rc0(t) < 1) for betweeen 5 to 6 weeks after which Rc0(t)

increases to above the threshold Rc0(t) = 1 (red dashed line). Note, that below a threshold of roughly α ≈ 0.86,

trajectories display a continued (slightly oscillatory) decline of rT (t). At the same temperature, an initial R0 of 3
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or 4 demands a stronger reduction in νc (α < 0.84 and α < 0.78 respectively) in order to achieve Rc0(0) < 1. The

corresponding trajectories show a trend of continued (slightly oscillatory) decline of Rc0(t) indicating that λ1 < 1.

Initial values of R0 = 2, R0 = 3 or R0 = 4 at higher temperatures demand a stronger reduction of adult

survival νc in order to achieve a) Rc0(0) < 1, and b) Rc0(t) < 1 for t > 15 weeks. In general, whether or not

projections predict a continued long-term decline in Rc0(t) depends on temperature and the strength of control. At

15◦C, long-term decline (associated with λ1 < 1) is achieved with α . 0.86, while at 20◦C and 25◦C, this is

achieved with α . 0.74 and α . 0.66 respectively.

An R0 mapping study in the Netherlands suggests that for temperatures between 15◦C and 20◦C, R0 for BTV

can take values greater than 10 or even than 20 (Hartemink et al., 2009). According to our analyses, at 15◦C,

reducing initial R0 = 10 or R0 = 20 to values Rc0(0) < 1 require α . 0.46 and α . 0.2 respectively, while at

20◦C, α . 0.32 and α . 0.032 would be required. Some of these α values are unlikely to be reached with the

application of adulticides, which means that in such scenarios, an integrated vector management approach should

be considered.
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Figure 4.1. Plots of the mean ratio rT = Rc0(t)/R0 (equation 4.2) that measures temporal changes in the basic reproduction ratio for

bluetongue transmission under vector control that reduces adult survival probability νc by a factor α. Rc0(t) is the basic reproduction ratio

t time-steps after initial control, and R0 is the basic reproduction ratio immediately prior to vector control intervention. For each

temperature, 50 equidistant values of α were considered (α ∈ {1, 49
50
, . . . , 2

50
, 1

50
}), indicated by the gray color gradient bars. For each α

considered, rT (t) trajectories over 15 weeks are shown. Colored curves represent trajectories of rT (t) associated with the largest value of

α (following same color code) that reduces an initial R0 of 2, 3 or 4 to Rc0(0) . 1 (in red, pink and blue respectively) immediately upon

starting vector control. Horizontal dotted lines represent threshold values in rT (t) below which Rc0(t = 0) < 1 for these cases. These

trajectories indicate that the initial effects of initially reducing Rc0(t) to below 1 can be lost if the vector population is free to grow during

the control program. Long-term decline (associated with λ1 < 1) is achieved at 15◦C with α . 0.86, while at 20◦C and 25◦C, this is

achieved with α . 0.74 and α . 0.66 respectively.



73

4.1.4 Discussion

The basic reproduction ratio, R0, provides a quantitative framework to address the question of level of risk posed

by a disease to a population. While a full treatment of estimating R0 from data was beyond the scope of this

analysis, we assessed the question of how much the R0 of BTV transmission changes over the course of vector

control targeting Culicoides adult survival, via a novel index rT (t).

The expression for R0 underlying our analysis was taken from Gubbins et al. (2008), where uncertainty and

sensitivity analyses carried out by the authors identified temperature and the vector-to-host ratio, m = A/H , as

being among the most important parameters in determining the magnitude of R0. The Culicoides IPLM model

(chapter 3) provided a basis for a temperature-dependent framework for rT (t).

Estimates on adult Culicoides daily survival decrease monotonically in the range 15◦C−25◦C (Fig. 3.5), from

which we might expect a lower control effort would be required at higher temperatures to achieve Rc0(0) < 1,

independently of the initial R0 considered. However, our results suggest the opposite, i.e. stronger efforts to

reduce adult survival νc(via the factor α) are necessary as temperature increases in order to ensure Rc0(0) < 1

whichever R0 is considered (see for example R0 = 2, 3 or 4). This may reflect the importance of the (non-linear)

relationships between R0 and the extrinsic incubation rate γT , whose variation among vector species is poorly

known. Improving estimates of γT for specific species involved in the transmission of BTV can thus enhance our

R0 estimates. However, changes in λ1 and generation time with respect to temperature are probably important too.

At any temperature considered, whenever α is sufficiently large that rT (0) is greater than some threshold in

(roughly) (0.8, 1), the subsequent trajectories of rT (t) consistently increase monotonically and the vector control

can be successful for a period ranging from (roughly) 2 to 6 weeks only for initial R0 very close to 1. For the

remaining cases, the transient decline observed in rT (0) during the first weeks does not provide a useful indicator

for the successful long-term reduction of R0, given that if α is not low enough, the long-term trend indicates that

BTV will (if introduced) spread after the temporary reduction. However, some advantage could be taken from

the predicted transient period, for instance to help implement vaccination strategies (Pioz et al., 2012) during a

period when Rc0(t) < 1, or to reduce the proportion of the year where Rc0(t) > 1. Thus, even if only transitory

periods of Rc0(t) < 1 can be achieved by vector control, the contribution can be important in an integrated disease

management program where other control measures are also used to reduce BTV spread.

Temperature influences many processes involved in the transmission of BTV, such as the vector mortality
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rate or the extrinsic incubation period (Gerry et al., 2001; Mullens et al., 2015). Moreover, temperature is a

driving force for immature developmental rates that influence the number of generations produced and the adult

population size that can result in a season (Mullens et al., 2004). The IPLM framework captures this driving force

in vector dynamics and gives an alternative to field estimates of some vector-related parameters (e.g. biting rate

can be estimated via the inverse of gonotrophic cycle duration), thus providing a step towards obtaining numerical

methods for assessing the risk of Culicoides-borne disease transmission, and – more importantly – for estimating

associated uncertainties.

Note, exponential growth (with rate λ1) underlies the (density-independent) IPLM Culicoides life-cycle model

(chapter 3). Although this is not true in most of natural systems, there are many situations where populations can

exhibit near-exponential behavior. This can arise when densities are well below carrying capacities, in scenarios

such as invasion, during vector control, trophic release (i.e. removal of key predators), recovery from extreme

climatic events or land use change that augments the carrying capacity (e.g. habitat creation). In any of such cases,

the exponential growth assumption could be adequate for guiding control. Moreover, if α is sufficiently small such

that Rc0(t) < 1 for large t, then having a density-dependent model is probably superfluous. That said, control

programs need to take care that juvenile survival does not increase as adult survival are reduced.

Limitations in the effectiveness of reducing adult populations in scenarios where high R0 values are expected

– as is the case in some projections of BTV transmission in Europe (Hartemink et al., 2009; Guis et al., 2012) –

suggest that an integrated vector management approach appears as a more efficient option to reduce initialR0, since

other measures could concur with the application of adulticides to debilitate the potential of BTV transmission.

Currently, vaccination is the most effective BTV control measure, while insecticide-treated livestock has also been

implemented. However, for emergent viruses, vaccines are often not ready in time – this was the case for the

Schmallenberg virus epidemics of 2011-2013 in Europe. In these scenarios, having alternative strategies at hand

can be highly useful. Larval control (e.g. reduction/elimination of breeding sites, or application of larvicides)

appears as the most effective complementary measure to reduce adult abundance of the next generation (Carpenter

et al., 2013). Physical barriers (not available yet in the field) is another alternative that could be considered to

reduce biting rates.

Expression 4.1 relies on a BTV transmission model where structure is defined by health status dynamics

described via ordinary differential equations (ODEs). For adult vectors, stages are susceptible, exposed, infected
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and removed (usually known as SEIR model (Keeling and Rohani, 2008)), and expression 4.1 assumes an

exponential probability distribution function of the extrinsic incubation period γT . Limitations associated to this

assumption could be overcome by approaching BTV transmission with regression-based stage-specific integral

projection models (IPMs). In this way, the IPM approach would allow, for example, to capture differential effects

of temperature on the Culicoides exposed state thus providing a more realistic distribution for studying temperature

dependence of γT .

Unfortunately, important gaps in the knowledge of BTV and of key indices associated to BTV’s vector (i.e.

Culicoides ) exist that hamper the understanding of transmission dynamics. For example, it is still unclear how

BTV overwinters in temperate regions (Mayo et al., 2014), or, particularly for Europe – struck by unprecedented

epidemics of BTV over the last decade –, several parameters used to describe vector features/behavior of local

species involved in the BTV spread are still not available.

Moreover, epidemiologists lack field methods that enable to obtain reliable (i.e. unbiased) estimates of the

effects of various biotic and abiotic factors involved in R0 (or other indices of disease transmission), as well as

methods to predict or evaluate the efficiency of different vector control strategies other than vaccination (Græsbøll

et al., 2014). Obtaining estimates required to efficiently determine alternative vector control targets in the field

makes the ultimate objective – interrupting BTV transmission – a challenging interdisciplinary task (Guis et al.,

2012; Mullens et al., 2015).

In this study, we used R0 to evaluate the efficacy of a particular control measure. A more complete R0-

based analysis is necessary to determine how combinations of control measures might be more effective against

BTV transmission. A major drawback of common approaches is that calculating R0 relies on parameters whose

estimates often have high uncertainty. Not accounting for this uncertainty greatly limits the potential use of R0-

based analysis for assessing potential control interventions. We do not explore this avenue further here, but clearly,

Bayesian methods can play an important role in quantifying the effects of uncertainty on R0 and calculating the

probability of R0 < 1 at any time.

4.1.5 Conclusion and perspectives.

Temperature-dependent projections of adult densities from the Culicoides IPLM (chapter 3) enable us to model

the temperature response of two of the parameters of greatest sensitivity involved in R0 of bluetongue virus (BTV)
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(Gubbins et al., 2008), namely adult vector survival and vector-to-host ratio. This marks an improvement to

current techniques that typically employ more simplified approximations such as constant parameters. We analysed

the impact of vector control targeting adult Culicoides survival on the temporal evolution of R0 at different

temperatures.

We found that for R0 > 1 and even relatively low (up to 4), reducing adult survival is not, in most of cases,

sufficient to predict reduction of R0 below 1. Also, we found that Rc0(t) is sensitive to λ1 and generation time,

determined by how temperature drives the whole midges life-cycle.

Here, for simplicity, we analysed just one BTV intervention strategy carried out once. However, it is well

accepted that control programs that integrate repeated and/or multiple control strategies have a greater chance of

success. Additional work should address both optimal intervention frequency and how other strategies, either

affecting different parameters or the same parameters to different degrees, further affect trajectories of Rc0(t).
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4.2 Towards a state-space IPLM framework

Multiple factors acting on different life-cycle stages influence the dynamics of stage-structured populations in

non-linear ways that complicate the assessment, management or control of populations. Field data is critically

important to determine which of these factors are the most relevant, what life stages they impact the most, and how

these impacts can be translated into ecological inferences. The relationships among endogenous and exogenous

driving forces and the life stages they influence are often difficult to piece together into statistical models without

sacrificing model realism for the sake of tractability. Thus, developing frameworks that address the complexity

and sources of variance that characterise natural systems / populations is a major challenge for ecologists.

In this section, we take some preliminary steps towards developing such predictive framework based upon

IPLMs. We set up a state-space model (SSM) with an stochastic density-dependent IPLM process model with a

view to taking advantage of field time-series data that provide a primary source of statistical power for analysing

populations (i.e. fitting models to data, generating predictions and quantify uncertainties).

This section is organised as follows. First, we analyse outputs from an IPLM model extended to include

density-dependence and environmental stochasticity. Next, we perform a preliminary analysis using a simulation-

based method – the synthetic likelihood – within an MCMC algorithm for inference with an IPLM state-space

model. Finally, preliminary results and some perspectives for further research are outlined with a view towards an

IPLM-based state-space framework for the study of stage-structured population’s dynamics in natura.

4.2.1 Extending the IPLM model

Let us recall the Culicoides IPLM life-cycle model of chapter 3. The female only egg-larva-pupa-adult (ELPA)

model is


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, (4.4)

where GA = WA + BA models multiple gonotrophic cycles, and stage-specific parameter sets are ΘS =

{µS , κS , νS , rS}, with S ∈ {E,L,P ,A}. This model was previously used to obtain estimates for temperature-
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dependent stage-specific developmental rates (mean and standard deviation, {µS , σS}), and daily survival νS from

Culicoides laboratory data (Fig. 3.5).

So that our models provide a more realistic representation of dynamics in natura, here the IPLM approach

is extended to include density-dependent population regulation and environmental stochasticity. A parameter, εt,

accounts for the effects of stochasticity on stage-specific mortality ν ′
S

, and is assumed to account for unmeasured

fluctuations in environmental (biotic and abiotic) covariates. The effects are defined on the logit scale, such that

logit(ν ′
S ,t

) =logit(νS ,t) + εS ,t, (4.5)

where εt is drawn from a normal Gaussian distribution, εt ∼ Normal(0, σε), and νS is survival of stage S in the

absence of density-dependence (as in chapter 3).

Density-dependence can reflect one or more regulatory mechanisms such as canibalism, parasitism or

competition for resources. In Culicoides , the strongest evidence of density-dependence corresponds to the

development and survival of larvae (Akey et al., 1978; Linley, 1985; Mullens et al., 2015). We focus thus on this

stage and introduce a new parameter, ω, that accounts for density-dependence in larval survival. For simplicity, we

assume ω is constant. Both εt and ω are assumed independent processes, thus survival ν ′
L

in the extended IPLM is

logit(ν ′
L,t

) =logit(νL,t) + εL,t − ωLt, (4.6)

where L is the total density over the rL larval substages.

Exploratory simulation analysis with the extended IPLM. To explore the behavior of the density-dependent

IPLM, we projected Culicoides dynamics in response to a seasonal temperature profile,

Tt = v + w cos
(
t

2π

365

)
, (4.7)

where v and w were set such that min(Tt) = 15◦C and max(Tt) = 30◦C, with t = 0 the coldest day of the

year. Temperature-dependent life cycle parameters were taken from interpolated posterior estimates ({µS , κS , νS})

obtained in chapter 3, with resolution parameters fixed in all cases to their maximum a posteriori (MAP) estimates,
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r(MAP)
E

= 6, r(MAP)
L

= 9, r(MAP)
P

= 31 and r(MAP)
A

= 8.

Firstly, for simplicity the median (from 1000 MCMC samples) of {µS , κS , νS} was used (continuous black

lines in Fig. 4.5), and fecundity was set to a constant (F = 100) so to be able to focus on effects of both noise

and density dependence. Projections covered five years, with an initial population N0 = 107 that was allocated

among all substages, according to substage proportions sampled from a Dirichlet distribution Dir(α1, . . . , αrT ),

where α = 1 ∀ α. With this setup, we first explored the dynamics of the deterministic density-dependent IPLM,

and then we included environmental noise.

In a second analysis, new projections were generated; this time developmental and fecundity parameters were

obtained using (1000) MCMC samples to establish their daily value accordingly to the temperature profile given

by expression 4.7. This enabled us to address the impact of uncertainty in demographic parameter uncertainties

(Fig. 4.5) on the projections of both the deterministic and noisy density-dependent IPLMs.

Deterministic density-dependent IPLM. Different orders of magnitude of ω were considered (ω ∈

{10−7, 10−8, 10−9, 10−10}), giving oscillating adult populations that did not descend below A = 105. Results

(Fig. 4.2) show that ω affects the carrying capacity K, thus the initial population either increases or decreases

(depending on ω) to reach a regime in which the population oscillates with a repeating pattern that stabilises after

(approximately) 2 to 4 years (depending on initial population size). Decreasing ω by one order of magnitude

roughly translates into an order of magnitude increase in K. There is no evidence of a bifurcation in the chosen

range of ω and (once stabilised) the oscillations for different values of ω follow a very similar seasonal pattern.

Notably, we observe a seasonal effect on generation time that is very consistent (e.g. in the final year) for all ω.

Note, that unlike the density-independent IPLM of chapter 3 (see Fig. 3.10), where the same temperature

profile was used, the results here (Fig. 4.2) indicate a much stronger influence of transient dynamics that extends

beyond the first year and are not damped in succeeding years. This long-term seasonal cyclicity manifests as

large broad peaks in late autumn and early winter, and smaller narrow peaks in hotter months. This pattern

arises from the differential responses of stages to temperature. For example, egg and adult survival decrease at

higher temperatures, while larval and pupal survival show relatively less change through the temperature regime

(Fig. 4.5). Moreover, a complex interplay between seasonality shifting stage-distributions, generation times,

density-dependence and population growth rates is observed. However, despite this complex set of interactions,

the dynamics settle into a regular predictable pattern.
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Figure 4.2. Simulated adult Culicoides density response to a seasonal temperature profile, for different strengths of density-dependence

in larval survival (ω). Daily temperature varies following a (cosine) profile of period one year, and affects Culicoides life-cycle parameters

according to estimates from chapter 3. Here, the median of life-cycle parameters (bold line of Fig. 4.5) was used, and fecundity was set to

F = 100.

Note that the temperature range we are using represents mild winters (i.e. λ1 > 1). We choose not performing
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simulation with lower temperature regimes given the high uncertainty of egg survival for temperatures lower than

15◦C .

We also explored the sensitivity of the system to initial conditions by simulating 1) different initial substage

proportions for a constant total population N0 = 107, 2) different orders of magnitude of N0, ranging from 102

to 1010, and 3) different degrees of density dependence with {ω ∈ 10−15, . . . , 105}). Monte Carlo simulation

indicated (figures not shown) that the system does not exhibit chaotic or near chaotic behaviour (by chaotic we

mean a system that features sensitivity to small changes in system states and parameters). A consistent result

was that in all cases, by the final year (year 5), populations showed signs of convergence (similarly to figure 4.2).

These results are preliminary and more detailed analyses should be carried in order to explore more thoroughly the

parameter space of N0 and ω.

Given the non-linearity of parameters (w.r.t. temperature) and the density-dependence, it could be expected

that the system would be a candidate to exhibit some chaotic behavior (May et al., 1976; Cushing et al., 2002).

Nonetheless, our exploratory analysis suggests the opposite. This is perhaps due to the seasonal temperature profile

regulating the system, damping out any asynchronised transients, although such aspects of the model have not been

addressed further in this work. Alternatively, the possibilities of bifurcations with increased fecundity (as in May

et al. (1976)) have not been explored. Interestingly, exploring the system at fixed temperatures (figures not shown)

confirmed that the observed cyclicity is driven by the seasonality without which stage-distributions stabilise and

oscillations cease. Thus, increasing the strength of this seasonality would be expected to further accentuate the

oscillations displayed by the deterministic dynamics.

Stochastic environment. In a second exploratory analysis, we included environmental noise to the density-

dependent Culicoides IPLM. Scenarios with and without environmental noise are considered. When environmental

noise was included, its standard deviation was set to σε = 0.25. In both cases, density-dependence was fixed with

ω = 10−9. Again, first the median (from 1000 MCMC samples) of {µS , κS , νS} for each stage S was used

(continuous black lines in Fig. 4.5), and fecundity was set to a constant (F = 100). Monte Carlo (MC) methods

(104 simulations) provided estimates of the distribution of daily adult abundance. In each simulation, N0 = 107

and individuals were initially distributed among all substages draw from a Dirichlet distribution with parameters

as defined above.
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Figure 4.3. Simulated adult Culicoides time series of an IPLM model including density-dependence larval survival (ω = 10−9). Daily

temperature varies following a (cosine) profile of period one year, and affects Culicoides life-cycle parameters according to estimates from

chapter 3. Here, the median of life-cycle parameters (bold line of Fig. 4.5) was used, and fecundity was set to F = 100. In (a),

environmental noise εt is included in the model (εt ∼ Normal(0, σε), with σε = 0.25). In (b), the system is deterministic (thus no

environmental noise). The continuous line shows the median of a Monte Carlo estimation (104 simulations) of log adult abundance, while

dashed lines refer to 1% and 99% quantiles. In case (b), slight differences in trajectories arise from different initial Dirichlet random

allocations of N0 = 107 individuals among all substages. The trajectory of a single simulation is shown in gray in both plots.

Figure 4.3 summarises the MC results. The median (bold line) and {1%, 99%} percentiles (dashed lines) of
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the distribution of daily adult densities, as well as the output of a single simulation (gray line) are shown for

both stochastic (top) and deterministic (bottom) scenarios. Comparing the two medians (bold line) indicates that

environmental noise produces a general reduction of the adult population (a direct consequence of environmental

noise increasing the probability of lower larval survival) and blurs the oscillations and transients generated by

density dependence. For example, the median of the deterministic output displays eight peaks per year, this is

reduced to six in the median of the stochastic system’s output. By contrast, the number of peaks in a single

simulation is greatly augmented by the stochastic survival term. Although the amplitude of oscillations in the

median is diminished, noise increases notably the day-to-day variance in adult density, as indicated by the dramatic

expansion of the 1% and 99% percentiles of trajectories (dashed lines) or the jagged profile of a single trajectory

(gray line). Analogous patterns in the whole behaviour were obtained when varying N0 across different orders of

magnitude explored (N0 ∈ {102, . . . , 1010}, results not shown).

We repeated the above analysis, i.e. simulating adult abundance from the density-dependent IPLM, with

and without environmental noise by including, this time, the seasonal uncertainty associated to estimates of

Culicoides life-cycle parameters and fecundity (1000 MCMC samples) (Fig. 4.5). Results (Fig. 4.4) show that

the added uncertainty decreases the range of oscillation in the median of the trajectories and that, in general,

noise augmenting the probability of lower larval survival greatly increases the probability of population crashes

that could lead to local extinction. That this feature was not detected in Fig. 4.3 reinforces the importance of

accurately assessing parameter uncertainty when making assessments of extinction risk for conservation purposes.

Moreover, the contrast between the two plots of Fig. 4.4 highlights the importance of correctly identifying the

level of environmental stochasticity in a system. In fact, turning this argument on its head, Fig. 4.4 suggests time

series data can provide a rich data source for estimating the degree of environmental stochasticity faced by field

populations. In other words, parameters related to this stochasticity should be identifiable from data if correct care

with parameterisation is taken.
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Figure 4.4. Simulated time series of adult Culicoides abundance generated from an IPLM model including in density-dependent larval

survival (ω = 10−9) and environmental stochasticity in survival (top only). Daily temperatures follow a cosine profile of period one year

trough the five years shown, and affects Culicoides life cycle parameters according to interpolated estimates (1000 MCMC samples) from

chapter 3 (see Fig. 4.5). On top, environmental noise εt is included in the model (εt ∼ Normal(0, σε), with σε = 0.25). At the bottom,

the system is deterministic (no environmental noise). Continuous line shows the median of the Monte Carlo estimates (103 simulations) of

log adult abundance, while dashed lines refer to 1% and 99% quantiles.
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Figure 4.5. Annual non-linear developmental responses to temperature at the maximum a posteriori (MAP) resolutions (rMAP
E = 6,

rMAP
L = 9, rMAP

P = 31, rMAP
G = 8) for egg, larvae, pupae and adult midges. Results from 1000 MCMC samples are plotted with

unimodal spline interpolation. Red and blue lines show median and 1% tail percentiles (P01,P99) of development kernel f(∆|θ). Median

(black line) and 95% credibility intervals (CI) for each parameter are shown (dashed lines). Seasonality in fecundity is not shown but is

derived, as in this case, from results giving Fig. 3.5.

These preliminary analyses provide useful insight when designing methodological strategies for estimating

parameters of stochastic density-dependent IPLMs for observed time series. Our aim is to have methods to

estimate density-dependence and stochasticity for the basic IPLM using field data. This requires that we confront

the process model with data for inference and prediction, which brings us naturally to the state-space model

framework.

4.2.2 Parameter estimation with IPLM state-space models

In this section, we perfom a preliminary analysis using synthetic likelihood (see Appendix C.1) methods (Wood,

2010) within an MCMC algorithm for inference with an IPLM state-space model (SSM). The process model of

our SSM is given by the noisy density-dependent IPLM described above (expressions 4.4, 4.5 and 4.6). For the
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observation model, we suppose that the number of adult individuals yt observed at every time step t is a Poisson

random variable with mean (and variance) φ, and distribution function

fY (yt = n) =
e−φφn

n
, n = 0, 1, 2, . . . . (4.8)

Weekly observations are assumed (i.e. the observation expectancy is zero for six days of the week and the resulting

“zero observations” are ignored). Noisy observations are modelled with an auxiliar parameter φ′t such that





logit(φ′t) = logit(φ) + εobs
t

εobs
t ∼ N(0, σobs).

(4.9)

Thus, the IPLM state-space model can be expressed as





xt+1 = M(xt,Θt)xt

yt ∼ Poisson(φ′tAt),
(4.10)

where M(xt,Θt) and xt are the matrix and vector from expression (4.4), and Θt indicates the time-dependent set

of parameters defining the process model and At is the total adult density density at time t.

Methods.

In order to explore the performance of parameter estimation with synthetic likelihood (SL), we simulated weekly

adult density data across three years. True model parameters were set to N0 = 108, ω = 10−9, σε = 0.5 and

logit(φ) = −12 + εobs
t , with σobs = 1; while stage-specific temperature-dependent parameters {µ, κ, ν} and

fecundity f were sampled taken from a single MCMC obtained in chapter 3. For simulations, the process model

was updated each day and observations were generated each seven days.

Two parameter estimation scenarios were performed using MCMC with synthetic likelihood (see Appendix

C.1.1): (a) the expected proportion of observed adults was assumed known (i.e. logit(φ) = −12), and the

parameter set {N0, ω, σε} was estimated; and (b) the parameter set {N0, ω, σε, φ} was estimated. During MCMC,

both N0 and ω were sampled on the log scale; φ on the logit scale; and a change-of-variables correction was used

to remove bias in the priors associated to these transformations. For both cases, priors (and hyperpriors) of the

model were
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



log(N0) ∼ N(7, 1.5)

log(ω) ∼ N(−9, 3)

σε ∼ Cauchy0(0, 10)

σobs = 1

(4.11)

where Cauchy0 is the zero-truncated Cauchy distribution with mean 0 and scale 10, while for case (b), the

additional prior logit(φ) ∼ N(−12, 0.5) was used. In both scenarios, the basic IPLM parameters that were

estimated in chapter 3 were assumed known and were fixed at their true values used for data simulation.

Target posteriors distributions for cases (a) and (b) were sampled using a block Metropolis-Hastings sampler

in NIMBLE. This was done using the nimble function RW_llFunction_block_sampler in order to incorporate the

SL (see manual NIMBLE Development Team (2016)). The numbers of simulations ns used within the SL for

MCMC runs were ns = {25, 50, 100}. For ns ∈ {25, 50}, 45 different datasets for the “true” data were explored,

while 13 were explored for ns = 100. In all cases, a total of 5000 burn-in samples plus 5000 post burn-in samples

was generated for each MCMC. Convergence diagnostics were performed using CODA (Plummer et al., 2006).

Results. The trajectories and autocorrelation from three typical MCMC runs with ns = 25, ns = 50 and

ns = 100 for case (a) are shown in Fig. 4.6. Chains showed a relatively rapid convergence to the true parameter

value (red lines) and better mixing (and reduced autocorrelation) for either ns = 50 or ns = 100 than for ns = 25.

This similarity between the results when ns = 50 or ns = 100 is also observed in Fig. 4.7, which compares

the true adult time series to the median and 95% CI of replicated data generated from the model during MCMC.

The median of the replicated time series shows a very good fit to data in all cases, and uncertainty was reduced

drastically when the number of replicates was raised from ns = 25 to ns = 50, while very similar performance

was obtained with ns = 100. We compared posteriors from MCMCs generated with different “true” datasets

for ns = 50 and ns = 100 (Fig. 4.8). These results confirm that similar identifiability is attained with the less

computational demanding ns = 50 case. Moreover, posteriors are highly different to the weakly informative priors

(expression 4.11), suggesting that the “true” simulated data yt were highly informative regarding estimation ofN0,

ω and σε.
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Figure 4.6. Trajectories and autocorrelation of parameter estimates from a typical MCMC run for case (a), i.e. {N0, ω, σε} estimated;

φ known. The number of replicates used for the vector of summary statistics were ns = 25 (left), ns = 50 (center) and ns = 1000 (right).

In all cases, the same “true data” was used to fit the model. Trajectories of replicated data from these three runs are shown in Fig. 4.7.
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Figure 4.7. Comparing MCMC realisations with different number of simulations in the synthetic likelihood (ns = 25 (a), ns = 50 (b)

and ns = 100 (c)) for the same “true” weekly adult abundance observation data, yobs. The “true” observation data (red line), the median

(black) and 95% CI (dashed) of adult trajectories yT from 5000 post burn-in MCMCs are shown. Plots (a), (b) and (c) correspond to the

same MCMC runs as in Fig. 4.6.
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Figure 4.8. Comparing posterior densities (solid black) of parameters on their (sampling) scale when transformation was used to

associated prior distributions (dashed), and true values (red), for ns = 50 (left) and ns = 100 (right). Densities were obtained from 5000

post burn-in MCMC samples, and 45 different “true” datasets were used for ns = 50, while 13 “true” datasets were used for ns = 100.

For case (b), i.e. when φ was included in the set of parameters to be estimated, chains showed poor mixing

regardless of the ns used to calculate the SL (Fig. 4.9). Very strong correlations were observed between φ and ω

(on their transformed scales), suggesting that the true parameters might not be identifiable given data y and that

developing efficient proposals for MCMC could be challenging.
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Figure 4.9. Trajectories and autocorrelation of parameter estimates from a typical MCMC run for case (b), i.e. {N0, ω, σε, φ}
estimated. Number of replicates used for the vector of summary statistics were ns = 25 (a), ns = 50 (b) and ns = 1000 (c). In all cases,

the same “true data” was used to fit the model.
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Discussion. Here we have shown how IPLMs can be extended to better characterise the dynamics of stage-

structured populations in natural (i.e. field) conditions. Including the IPLM into the state-space framework to study

and analyse time-series of ongoing population dynamics increases the complexity of the modelling challenge.

While the intractability in resulting likelihoods hampers the performance of likelihood-based model inference, we

have shown that a recent simulation-based approach – the synthetic likelihood (SL) – offers a promising alternative.

With simulated multi-annual time-series of weekly adult flight-trap data, we have explored the identifiability of

key cryptic parameters in natura (environmental stochasticity in mortality, density-dependence, initial population

density and expected efficiency of flight-traps). We have shown that when flight-trap efficiency and σobs are known,

the other parameters can be identified to a high level of precision with reasonable computational demand (in terms

of the number of replicates the SL uses). If the efficiency of the observation process is erroneously assumed

known then bias in the estimates of ω (and other correlated parameters) can be expected. When trying to estimate

flight-trap efficiency φ, very strong correlation with the density-dependence parameter ω hampers the ability of the

sampler to adapt, suggesting that additional data sources are required to reduce uncertainty in φ and to calibrate

the model for epidemiological purposes

More extensive simulation and estimation scenarios, and sampling strategies, should be explored. For example,

in these preliminary studies, several parameters were fixed at their true values. In the analysis of field data we do

not have this luxury, and so the number of parameters to be estimated must be expanded in order to be aware

of potential problems or limitations when working with field data. This risks placing extra-demand on the set of

summary statistics, which may need to be expanded in order for parameters to be identifiable.

Identifying the most informative combinations of summary statistics (and distance metrics) involved in SL

calculation via more systematic methods (Scranton et al., 2014), could improve estimates with lesser computational

efforts. Also, although not included in this study, random variables to correlate population dynamics – which were

explored via the simulation study of chapter 2 – could be used to include different genotypes, group-level dynamics

determined by conditioning phenotypic responses of sub-populations (to possibly unmeasured) local factors, or

other random effects affecting a particular population in question.

A further avenue that should be explored is to identify how parameter uncertainty increases and identifiability

decreases as noise in the observation model increases and the level of information in the observations decreases. It

may prove challenging to discriminate noise in the observation process and in the process model. Similarly, how
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the frequency of making observations affects estimations should also be explored in order to guide surveillance

programs about optimal sampling strategies.

Here, a relatively mild seasonality was used. This was due to large uncertainties outside the chosen temperature

range. To reduce these uncertainties one would ideally perform temperature transfer experiments (Régnière et al.,

2012) and adapt techniques in chapter 3 to obtain parameters across large temperature ranges. Alternatively,

however, it could aslo be possible to reduce uncertainties in {µ, κ, ν} at low temperatures using techniques

developed in this chapter.

The results of simulation suggest the dynamics generated from a combination of strong seasonality and density

dependence could be relatively rich source of information that the IPLM framework is well adapted to exploit. This

possibility is clearly an exciting avenue for further research.

4.2.3 Conclusion and perspectives

The ultimate aim guiding this prospective analysis was to explore methodological strategies that enable Bayesian

estimates for the stochastic density-dependent IPLM when including field (time series) data. For this, we have

extended the IPLM model to include key aspects of observing process of of natural systems, e.g. regulatory

mechanisms and sources of stochasticity in both the population dynamics and data sampling.

Promising results with simulated data from our IPLM state-space model coupled with synthetic likelihood

based MCMC set the basis for further work that provide the methodological tools for combining survey (i.e.

census) data and individual-based demographic data for more detailed inference about population dynamics. To

conclude, our preliminary study suggests that synthetic likelihood based MCMC inference of the IPLM state-

space model shows great promise as a framework for parameter estimation and model inference of realistic stage-

structured population models. Further research is required to extend this preliminary study and to graduate from

analysing simulated to real datasets.



Chapter 5

General conclusion

This thesis has introduced the integral projection Lefkovitch matrix (IPLM) model, a new matrix-based approach

that is expected to improve the current predictive performance of models for biological stage-structured populations

(SSPs). The new framework incorporates vital rate heterogeneity at the level of within-stage developmental; is

flexible enough to include complexities encountered by natural populations such as non-linear responses to time-

varying covariates, density-dependence or environmental stochasticity; and enables the use of different types of

data for estimation, inference and simulation. Moreover, the ability to fit IPLMs with individual-level fixed-traits,

or group-level random effects, provides a potentially powerful tool for confronting theoretical ecological, or even

eco-evolutionary, models to data.

By comparing outputs from the fitted Culicoides IPLM to those from its “classic” Lefkovitch matrix model

(CLM) counterpart, we have demonstrated the effects of assumptions regarding variance in stage durations

(and the processes that generate that variation) in common metrics of asymptotic and transient dynamics. The

oversimplified assumptions of CLMs translate into erroneous estimation of the amplitude and duration of transient

dynamics, or the range of temperatures predicting population growth. The importance of this effect is exacerbated

in fluctuating environment such as those studied here because perturbations are inherent features of these systems.

The effects of these assumptions can have implications regarding potential ecological niche predictions from

mechanistic niche models and, in a more broad and applied sense, can have serious consequences in wildlife

management, conservation and pest / vector control.

Many phenological models rely on an assumed linearity between cummulated degree-days and development.

93
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By modeling the effects of heat energy accumulation via a kernel that tracks within-stage development in a

Bayesian framework, our stage-specific IPMs couple theoretical ideas (Plant and Wilson, 1986) and previous

biologically limited approaches (Dennis et al., 1986) with established statistical techniques to provide more

informative estimates of how developmental rates vary in response to covariates whilst providing more informative

assessments of uncertainty than is encountered traditionally. For example, we used the results of our Bayesian

model fitting to test the linearity assumption of classic degree-day models, showing that linearity only provides a

robust developmental model over extremely narrow temperature intervals. A further limitations of most degree-

day based models is that they usually do not account for diapause (a biological mechanism of reducing activity in

the face of adversity to maximise survival), which is observed in some Culicoides species and other arthropods.

Extending IPLMs to account for key covariates other than temperature (e.g. photoperiod or soil moisture) driving

diapause could provide a more realistic model for the study of phenology, although diapause data is scarse for most

arthropods of epidemiological interest (Isaev, 1974, 1976; Faraji and Gaugler, 2015).

The emergence and resurgence of vector-borne diseases represents a global public health issue. Improving

models to enable inference from vector surveillance data is a necessary step towards advancing our knowledge

of vector ecology and the epidemiology of the pathogens they vector. In the case of our motivating example,

despite the epidemiological risk posed by biting midges, their life-cycle parameters are poorly documented and

under-exploited. Modeling has prioritised empirical analyses of flight-trap data and, as far as we know, to date

no stage-structured models have been developed to predict the responses of Culicoides populations (and their

associated diseases) to global change. We have demonstrated a potential application of the Culicoides IPLM

model by analysing the effects of a hypothetical adulticide-based vector control scenario on the temporal variation

of the basic reproduction ratio (R0) of BT disease. Although quite simple, our analysis shows the potential utility

of including temperature-dependent generation times. For example, the approach can reduce error associated with

epidemiological predictions, highlight the transient nature of R0 dynamics in response to control intervention and,

with appropiate data, can be easily extended to help guide effective vector management schemes incorporating

other integrated vector management strategies (e.g. larvicide or vaccination).

A popular use of matrix models is to perform sensitivity analysis, which permits the exploration of effects of

parameter perturbation (Caswell, 2006). In the IPLM framework this would enable the evaluation of the relative

importance of various parameters across the life cycle. This can potentially help to determine key parameters for
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vector control. Since these developments follow standard methods, we did not explore this potential use of ILPM

models. Moreover, we have frequently used Bayesian methods to indicate the possible distribution of indices, such

as λ1, given uncertainty in IPLM parameters. However, future work should permit that sensitivities and elasticities

can be readily obtained from IPLM models by users.

Another interesting potential study not addressed in this work is comparing the predictive performance of

our models to those of purely statistical approaches. This is particularly important in the light of the recent rise

of machine learning and the ensuing controversy regarding whether machine learning tools can outperform true

models on predictive tests (Perretti et al., 2013; Hartig and Dormann, 2013). Given the strong determinism of

environmental factors in the generation times and vital rates of poikilothermic organisms, our working philosophy

has been one of improving the resolution of existing “mechanistic” models, and incorporating them into a state-

space framework, in order to maximise the value of our knowledge regarding prediction. Presumably, if machine

learning tools outperform IPLM predictions then there are holes in our ecological understanding that would need

to be addressed. Comparing the predictions of our mechanistically informed models to those of mechanistically

naive models could provide valuable information for guiding future research directions.

A perennial goal of ecology is the establishment of methods that realistically scale-up from laboratory to

field conditions. Yet, it is well known that complex population models are challenging to fit to real data for

many reasons. We have extended the basic IPLM framework to include key aspects relating to observed stage-

structured dynamics in field conditions, e.g. regulatory mechanisms and sources of stochasticity in both the

population dynamics and data sampling. We have taken preliminary steps to explore the use of cutting edge

Bayesian techniques for fitting IPLM models to partially observed (i.e. adult only) time series typical of the data

obtained from vector surveillance studies. Promising results with simulated data from our IPLM state-space model

coupled with synthetic likelihood based MCMC need to be further extended to better identify the balance between

biological detail, computation time, and predictive power that current data and computer power support.

Our long-term aim is to develop robust statistical methods that link IPLM models to field data where

populations (with overlapping generations) are partially observed. This would allow combining survey (i.e. census)

data and individual-based demographic data for more detailed inference about population dynamics. Yet – and

taking Culicoides as a paradigmatic example – there are considerable technical challenges for various reasons.

For example, the dynamics of juvenile stages are rarely the subject of surveillance studies in natural conditions,
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primarily due to their small size and related difficulties sampling their populations. Most of the data pertinent

to modeling the juvenile stages of Culicoides comes from laboratory studies on species that are not necessarily

the species of key epidemiological importance – there is therefore uncertainty regarding how pertinent parameters

gleaned from laboratory studies are for parameterising models of dynamics in natura. Thus modellers need to

be able to use surveillance data to adjust parameters that have been obtained from laboratory studies in order to

achieve greater realism – but adding this flexibility comes at the cost of parsimony. Moreover, most surveillance

studies of Culicoides rely on trapping flight-active adults, which is known to provide a biased representation of the

true abundance of active adults. For example, traps are often located close to livestock so the distribution at other

locations can be left unsampled. Furthermore, it is known that large between-species and between-sex differences

exist in how individual insects respond to various trap types or different hosts (Viennet et al., 2013). Nonetheless,

these data sources are often the best indicators available, and developing methods that enable extracting as much

biological information as the data can support is a well known goal in ecological modelling.

Ecologists have always been fascinated by the sources of cyclicity in natural populations. Here we have

shown how seasonal shifts in generation time, stage distributions and density dependence naturally lead to

multiple population cycles within a given year. It is not difficult to conjecture that models which remain overly

simplistic regarding the links between within-stage development and environmental fluctuation have poor hope of

characterising such cyclicity. Moreover, the lack of cyclicity under constant temperatures suggests there remain

other bifurcations associated with seasonality that have yet to be identified and mapped. In ideal scenarios,

the information in these patterns should be able to help model selection. However, we have also seen how

environmental noise can blur the characteristic deterministic cyclicity of density-dependent IPLMs, which can

be expected to make model selection a more challenging problem. Moreover, it is still not known if, and under

what conditions / parameterisations, an IPLM model might demonstrate bifurcations leading to chaotic behaviour,

and it is likely that discriminating between chaos and the effects of fluctuating climate in real data could be difficult.

In conclusion, many challenges remain to be addressed regarding the analysis of IPLMs.

The key contribution of this work is that the methods explored here can be adapted to study the life-cycles

of many organisms. This is particularly powerful for species with instar or egg stages, for which typical

developmental states such as size or weight provide poor or unavailable predictors for the underlying dynamics.

The generality of IPLMs – including the ability to fit IPLMs for many taxa not previously studied with IPMs –
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suggests that many applications are possible, including mechanistic niche modelling, demographic compensation

analysis, eco-evolutionary and ecological forecasting for conservation, agricultural and epidemiological purposes.



Appendix A

Appendix to Chapter 2

A.1 Discretising within-stage IPLM

The main text describes an integral projection model (IPM) for characterising the dynamics of within-stage

development δ (equation 2.3). In this model, an individual’s developmental status δ progresses via increments

∆ = δ′ − δ with PDF f(∆|θ), CDF F (∆|θ) and parameters θ. For parsimony, we assume both f(∆|θ) and

survival ν are independent of δ. The IPM-kernel is thereforeKΘ(∆) = νf(∆|θ), where the PDF f(∆|θ) accounts

for developmental rate heterogeneity. Throughout this work, we assume f(∆|θ) is the PDF of a beta distribution

with mean (i.e. expected developmental increment) µ and variance κµ(1 − µ) (parameters defined in the main

text). The full parameter set for a given stage is thus Θ = {ν, θ} = {ν, µ, κ}.

A matrix approximation of this IPM for within-stage development is obtained by discretising the within-stage

developmental status δ into r equally sized substages. We assume individuals always start a new stage in the first

substage and develop by increments of up to r substages each time-step. Within-stage transition probabilities for

discrete developmental increments of l substages are given by

pl =

l+1
r+1∫

l
r+1

f(∆|θ)d∆, (A.1)

where pr = 1−∑r−1
l=0 pl gives the probability to complete the entire stage in just one time-step. These probabilities

are used to define the projection matrix WS for each stage S (equation2.4 in main text). The full parameter set for a
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given stage in this discretised IPM-approximation is {ν, µ, κ, r}, where r can be treated either as a computational

parameter to fix or a parameter to estimate. In the latter case, sensitivity to r implies r functions as a shape

parameter, in which case alternative more flexible distributions for f(∆|θ) might be explored.

A.2 Quality-dependent development with Gaussian copulas

Copulas are tools for generating multivariate distributions from an arbitrary set of marginal distributions (Kruskal,

1958; Nelsen, 2006). In the simulation-estimation study of chapter 2, Gaussian copulas were used to model

correlation between individual quality q and development increments ∆. Here, we outline the details required to

condition development kernels on individual quality. We assume q is fixed through an individual’s lifespan and

conditions the distribution of increments at each time-step.

Marginal distributions of both ∆ and q were described by beta distributions with densities

f∆(∆|α1, α2) =
∆α1−1(1−∆)α2−1

B(α1, α2)
, (A.2)

fq(q|ξ1, ξ2) =
qξ1−1(1− q)ξ2−1

B(ξ1, ξ2)
, (A.3)

and with corresponding cumulative distribution functions Fq and F∆ . A standard uniform distribution was obtained

for q by setting ξ1 = ξ2 = 1.

Correlation between ∆ and q is established via random variables x∆ and xq, which have a bi-variate Gaussian

density with correlation coefficient ρ and standard normal marginal densities φ(·) with distribution functions Φ(·).

These variables are linked via the following probability integral transformations:

Fq(q) = uq = Φ(xq), (A.4)

F∆(∆) = u∆ = Φ(x∆), (A.5)

where uq and u∆ follow standard uniform distributions. The joint density of ∆ and q is therefore
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f∆,q(∆, q|α1, α2, ξ1, ξ2, ρ) = fx∆,xq(x∆, xq|α1, α2, ξ1, ξ2, ρ)

∣∣∣∣∣∣∣

∂∆
∂x∆

∂∆
∂xq

∂q
∂x∆

∂q
∂xq

∣∣∣∣∣∣∣

−1

, (A.6)

where fx∆,xq(·, ·|α1, α2, ξ1, ξ2, ρ) is the bi-variate normal density with correlation parameter ρ and the Jacobian

determinant provides a change of variables correction for the transformations.

The above specification gives the following conditional density of ∆ given q:

f∆|q(∆|α1, α2, q, ρ) =
fx∆|xq(x∆|α1, α2, xq, ρ)f∆(∆)

φ(x∆)
, (A.7)

where fx∆|xq(x∆|α1, α2, xq, ρ) is normal with mean µ∆ = ρxq and variance σ2
∆

= 1 − ρ2. The corresponding

conditional distribution function is given by the identity

F∆|q(∆|α1, α2, q, ρ) =

∫ ∆

0
f∆|q(y|α1, α2, q, ρ)dy =

∫ x∆

−∞
fx∆|xq(z|α1, α2, xq, ρ)dz = Fx∆|xq(x∆|α1, α2, xq, ρ).

(A.8)

A.3 Generating sojourn-mortality probabilities with IPLMs

In the IPLM approach, the fate of every individual in a given stage can be described by two pieces of information:

1) the time-to-event, yA ∈ {1, . . . , tc} (where tc is the time beyond which data are right censored); and 2) the

event-type, yB ∈ {stage completion, mortality, censored}. Probabilities associated with combinations of these

two pieces of information can be obtained as follows. Given stage-specific parameters {µ, κ, ν, r}, construct the

IPM-approximation (equation (2.5), main text). Project the unit density pulse vector (nT , cS )0 = (1, 0, . . . , 0)T

and, for each time-step t ∈ {0, . . . , tc}, record the probabilities to complete a stage, pd(t), or die, pm(t). The

probability of right censor beyond tc is pc = 1−∑tc
t=1

(
pd(t) + pm(t)

)
.

Mean and variance of sojourn-time distribution The probabilities pd, pm and pc define the right censored

sojourn-mortality time distribution for individuals in a given stage.
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These probabilities provide the basis for calculating the likelihood of IPLM parameters given the observed

data.

The mean and variance of the sojourn time distribution can be calculated as

µ̃ = lim
tc→∞

∑tc
t=1 pd(t)t∑tc
t=1 pd(t)

(A.9)

and

σ̃2 = lim
tc→∞

∑tc
t=1(t− µ̃)2pd(t)∑tc

t=1 pd(t)
. (A.10)

In practice, these quantities are approximated by setting tc large enough that pc become negligibly small.

A.4 Markov chain Monte Carlo strategy

Parameters µ, κ and ν are bounded on (0, 1). We adopted the strategy of transforming these parameters to the logit

scale to enable sampling on unbounded domains.

Thus, in general we sampled the logit transformed parameters

µ′ = log
( µ

1− µ
)
, (A.11)

κ′ = log
( κ

1− κ
)
, (A.12)

ν ′ = log
( ν

1− ν
)
. (A.13)

A simple change of variables correction reveals the prior densities of these transformed parameters to be

f(µ′) =
1

(1 + eµ′)(1 + e−µ′)
, (A.14)

f(κ′) =
1

(1 + eκ′)(1 + e−κ′)
, (A.15)

f(ν ′) =
1

(1 + eν′)(1 + e−ν′)
. (A.16)

In the simulation-estimation study, a burn-in period consisting of a series of runs of 103 iterations was iterated

until LP run < 2 + LP run−1, where LP run is the mean log posterior density of the model over a given short
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run. Expected sample size (ESS) (Plummer et al., 2006) was calculated for each parameter from the final

pre-run. Thinning was then set to 2 × min(ESS), to remove much of the auto-correlation from subsequent

samples. Thereafter, 104 thinned post-adaption samples were generated per model and convergence diagnostics

were performed using CODA. These post-MCMC sampling steps generated a unique MCMC output file per stage

and further CODA diagnostics were performed on those outputs. NIMBLE and R scripts used in these analyses

are available on github https://github.com/scastano/IPLM_code.



Appendix B

Appendix to Chapter 3

B.1 Culicoides biting midges

B.1.1 Culicoides as disease vectors

Culicoides (Diptera: Ceratopogonidae) is a genus of biting midges of small size (approaximately 1-3 mm). Most

of the 1300 species known worldwide blood-feed on vertebrate mammals (including humans), birds, reptiles and

other insects, and are distributed from the tropics to the tundra and from sea level to altitudes over 4200 m (Borkent

and Wirth, 1997; Mellor et al., 2000; Meiswinkel et al., 2004b,a; Carpenter et al., 2013). Yet, due to their diversity,

small size and fragility which limit studies of their ecology in the field and complexify laboratory colonization;

and due to their relatively limited impact on human health; and despite their importance in veterinary health;

Culicoides remain the least studied of the major Dipteran vector groups (Carpenter et al., 2013).

Adult Culicoides transmit several pathogens to humans and animals. They transmit parasites of veterinary

importance, such as hemoparasites (Haemoproteus sp. in birds, Hepatocystis kochi in monkeys) and filariasis

(Onchocerca sp. in horses and cattle). Nonetheless, their prime importance is due to the viruses they transmit.

Currently, the only known virus transmitted by Culicoides to humans is the Oropouche virus (OROV), which

causes Oropouche fever, characterised by headaches in most of cases, and, less likely, by generalized arthralgia,

anorexia and in rare cases meningitis (Linley et al., 1983; Mellor et al., 2000). OROV epidemics have occurred in

Brazil, Peru and Panama since the beginning of the 1960s, with associated incidence rates remaining undetermined

for the vast majority of outbreaks (Pinheiro et al., 1981b; Watts et al., 1997). Several studies suggest Culicoides
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paraensis to be the main vector of OROV between humans during urban epidemics (Anderson et al., 1961; Pinheiro

et al., 1981a; Roberts et al., 1981; Hoch et al., 1990), with estimates of people infected in Brazil alone of up to

half a million (Pinheiro et al., 1998). The Oropuche virus is currently restricted to the Amazonian region of South

America, Central America and some Caribbean islands (Anderson et al., 1961; Tesh, 1994; Baisley et al., 1998;

Vasconcelos et al., 2001; da Silva Azevedo et al., 2007).

Several species of Culicoides are involved in the transmission of viruses of veterinary importance. These

pathogens include bluetongue virus (BTV); epizootic hemorrhagic; disease of deer virus; African horse sickness

virus (AHSV); equine encephalosis virus; Akabane virus and Schmallenberg virus (Howerth et al., 2001;

Maclachlan and Guthrie, 2010; Maclachlan, 2011; Carpenter et al., 2013; Mellor and Hamblin, 2004; Lievaart-

Peterson et al., 2012; Hoffmann et al., 2012; Lehmann et al., 2012; Beer et al., 2013). Among these, AHSV and

BTV are notifiable to the OIE (Office International des Epizooties, World Animal Health Organisation) because

of their potential of rapid spread and economic impact (Office International des Epizooties, online). Culicoides

have been responsible of massive outbreaks of AHSV in Asia in 1959-61 (leading to the death of over 300,000

equids), and in 1987-91 in Spain and Portugal (Rodriguez et al., 1992), proving for the first time that the virus

could overwinter in Europe (Mellor and Hamblin, 2004).

Yet, the paradigmatic illustration of the devastating effect of a Culicoides-borne virus on naive livestock

populations is the unprecedented series of outbreaks of BT in Europe which started in 1998 and is still ongoing

in some of the affected countries. These epidemics, involving multiple strains of BTV, spread across most of the

Mediterranean basin and the Balkan areas, reaching historically uninfected areas 800 km further north in Europe

than previously reported (Mellor and Wittmann, 2002; Purse et al., 2005), causing the most severe outbreak of

this disease ever recorded (Gubbins et al., 2008). The virus reached new regions where a key vector (and invasive

species), Culicoides imicola , was present, but also regions where C. imicola was absent, leading to the discovery

that some species of indigenous European Culicoides were also able to transmit the virus. This alarming scenario

imposed strict monitoring and drastic movement restrictions heavily impacting international trade issues with

major economic consequences.
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B.1.2 Life-cycle

The Culicoides genus contains species of holometabolic midges, i.e., they undergo complete metamorphosis. A

typical Culicoides life cycle (B.1) consists of a series of immature aquatic/semi-aquatic stages (egg, four larval

instars and pupa) followed by a mature aerial stage (adult). Adult Culicoides live between 10 and 20 days, although

exceptionally life-span can extend to more than 90 days. In most species, females are hematophagous, a blood

meal being required for eggs maturation. Eggs breed in moist conditions in a wide variety of habitats, particularly

damp, muddy areas containing organic matter such as marshes, bogs, beaches, swamps, tree holes, irrigation pipe

leaks, streams, saturated soil, animal dung, and rotting fruit and other vegetation (Mellor et al., 2000). The mean

egg number laid per cycle varies among species (from about 30 to over 400 eggs). Hatching takes place 3 to 5 days

after eggs are laid. Larvae go through four stages of development, which can take from five days to many months,

to develop into pupae. Temperate region species overwinter in the last larval state via a developmental diapause,

developing to pupae and emerging as adults once environmental conditions are favorable (Kettle, 1984). The pupal

stage is in general short (2 to 3 days) and gives rise to emergent adults. Developmental times within immature

stages depend on environmental (particularly on temperature and humidity) and demographic factors. Under

favorable environmental conditions, development from egg to adult takes about 15 days, but during overwintering

periods it can take up to 7 months. Emergent females are called nulliparous (i.e. that have not layed eggs). The

flight range of Culicoides (for seeking a mate, taking blood-meal or searching an oviposition site) usually is short

(a few hundred meters from breeding sites) although some species disperse to a few kilometers (Lillie et al., 1985)

and individuals have been known to disperse some hundred of kilometers (Sellers et al., 1977), a phenomenon that

has received recent attention from modellers (Eagles et al., 2014; Burgin et al., 2012) and population geneticists

(Jacquet et al., 2016). After fecundation, females take a blood meal (although a few species are autogenus) to

get the energy needed for producing and laying eggs. Once the first eggs are laid, females are said to be parous.

The time interval between two consecutive blood-meals corresponds to one gonotrophic cycle, and takes usually

between 3-5 days although may be reduced further at climatically optimal periods (Holmes and Birley, 1987).

Female longevity determines the number of blood meals obtained within a lifetime.
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Figure B.1. Culicoides life cycle, adapted from Purse et al. (2005).

A female can become infected by taking a blood meal on a viraemic host. The female will then be able to

transmit the virus to other hosts during the following blood meals. Infected females stay infectious for their entire

life-span. No vertical transmission of BTV from a female to its eggs has ever been described in Culicoides ,

although genetic evidence from nuliparous C. obsoletus/scoticus and c. punctatus suggests Schmallenberg virus

can be transmitted vertically (Larska et al., 2013). Thus, only parous females are involved in BTV transmission.

Transmission can only occur if the life-span of a female is greater than the duration of the gonotrophic cycle since

the female needs to take at least two blood meals for transmission to occur.

B.2 Culicoides life cycle data

Laboratory data from two Culicoides species were used to parameterise development, survival and fecundity for

a complete life cycle (see B.1). Note, these species share similar developmental responses across the 15◦C-

35◦C range (Purse et al., 2015). Our own insectarium (ASTRE, Montpellier) provided individual-level data on

gonotrophic cycle durations, number of gonotrophic cycles and number of eggs laid for C. nubeculosus females

at 15◦C, 20◦C and 25◦C (Balenghien et al., 2016). The laboratory also provided egg maturation and survival

data at 15◦C. Two similar C. variipennis studies (Mullens and Rutz, 1983; Vaughan and Turner, 1987) provided

maturation time data for immature stages (egg, larva and pupa) – these data were available either as individual-level

maturation times or summary statistics (sample means and standard deviations). The study of Vaughan and Turner

(1987) provided developmental data at 20◦, 23◦, 27◦, 30◦and 35◦C whilst that of Mullens and Rutz (1983) provided
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developmental data at 17◦, 20◦, 23◦, 27◦, 30◦and 35◦C. In the latter case, published data were complimented with

original notes from the author’s lab-book which gave initial sample sizes and individual-level data for pupal and

composite larval-pupal stage studies. Published larvae-only data from both studies were not used due to ambiguity

regarding sample sizes. The likelihoods functions used to analyse data type are given in section B.3.

DEVELOPMENT, SURVIVAL & FECUNDITY DATA

Temp
C. nubeculosus C.variipennis

Balenghien et al.
(2016)

Mullens et al.
(1983)

Vaughan et al.
(1987)

gonotrophic
cycle

egg fecundity egg larva & pupa pupa egg pupa

15 1k 1c 3
17 2u† 1c 2u
20 1k 3 2u† 1c 2u 2p† 2p†

23 2u† 1c 2u 2p† 2p†

25 1k 3
27 2u† 1c 2u 2p† 2p†

30 2u† 1c 2u 2p† 2p†

35 2p† 2p†

Table B.1. Available laboratory data for estimating Culicoides life cycle parameters. Data sets marked “1” provide sojourn time

frequency distributions with “k” indicating that mortality date frequency distributions are known and “c” indicating clumping of mortality

and right censored data. Data sets marked “2” provide the mean & standard deviation of observed sojourn times with “p” indicating the

proportion surviving at each temperature is known and “u” indicating survival related information was unreported. The data set marked

“3” provides the number of eggs laid per female in the gonotrophic cycle study. The notation † indicates missing sample size data

requiring imputation steps described in section B.4.

B.3 Likelihood functions

For every column of table B.1, data at different temperature are assumed to be independent. Thus, for a given stage

and data set, equation 2.11 in the main text is

f
(
µ1, . . . , µK , κk, . . . , κK , ν1 . . . νK , r|y

)
∝

K∏

k=1

f
(
yk|µk, κk, νk, r

)
f(µk, κk, νk, r), (B.1)

where y = {y1, . . . , yK} and yk is data collected at the kth temperature. The Bayesian framework easily permits

to extend expression (B.1) for the cases where models were fitted using multiple data sources – they are assumed

independent each other.
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Details of the various expressions used for the likelihood function f(yk|µk, κk, νk, r), which depend on the

statistical information provided in data y = {y1, . . . , yK} (see table B.1), are presented below. The following

expressions for each data type are valid at every empirical temperature and implicitly dependent of r , thus r and

subscripts k are dropped for brevity.

Modelling sojourn-mortality time frequency data. Where data provide counts for the number of individuals

that can be associated with pd(t), pm(t) or pc at each time step, then a multinomial likelihood function can be

defined. When such data is available at the individual-level – i.e. for each observation the total number of counts

in one – then a categorical likelihood function can be used. This was the case for adult females in the Culicoides

study – note, data sets marked "1k" in table S1 provide the sojourn-mortality time frequency distribution for each

gonotrophic cycle of individual females. In that study, the sojourn-time frequency distribution was used to model

the time required to complete each gonotrophic cycle, where the completion of a gonotrophic cycle was indicated

by the completion of egg-laying.

The fate of each individual i in a given stage (or gonotrophic cycle) is described by time-to-event yiA ∈

{1, . . . , tc} and event-type yiB ∈ {development, mortality, censored} data. Each observation can therefore be

modelled by assuming

(yiA, yiB) ∼ Categorical
(
pd(1), pm(1), . . . , pd(tc), pm(tc), pc

)
. (B.2)

Sojourn time frequency data with clumped mortality – right-censor information. Sometimes it is difficult

or impossible to know precisely when mortality has occurred or even how many individuals have died prior to right

censor time tc. In such scenarios, the inability to distinguish dead from censored individuals requires clumping

of the probabilities pm(t) and pc to match the clumping of the associated data. Once data and probabilities are

correctly clumped, then the likelihood is derived following a similarly procedure to the previous case.

In the Culicoides study, data sets marked "1c" in table S1 provide sojourn time frequency distribution data

but do not distinguish the number of dead individuals from immature individuals still alive after tc. Let yt be the

number of individuals completing maturation in t days, let ymc be the number of dead or right censored individuals
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and ytotal be the sample size. Likelihoods for such data are simply obtained by assuming

y1, . . . , ytc , ymc ∼ Multinomial
(
ytotal, pd(1), . . . , pd(tc), 1−

tc∑

t=1

pd(t)
)
, (B.3)

where probabilities pd(t) are obtained as described previously.

Likelihood for mean and standard deviation of sojourn times. Sometimes the only data available are

summary statistics, typically means and standard deviations, obtained from publications. In such cases, we need

the likelihood of the available summary statistics given the parameters.

For data sets marked "2u" and "2p" in table S1, data y consists of sojourn-time mean, µobs, and standard

deviation, σobs. Ideally the sample size N is available too. Assuming normality, the following likelihood can be

written for this data:

f
(
µobs, σobs|µ, κ, ν

)
=

SPost
√

2πσ̃
exp

{
−σobs2

+
(
µobs − µ̃

)2

2σ̃2

}
, (B.4)

where {µ, κ, ν} are the model parameters, and µ̃ and σ̃ are moments of the joint sojourn-mortality time distribution

estimated from probabilities pd(t) (Appendix A.3), calculated with tc high enough that pc falls below a precision

threshold and could be assumed negligible. Note, in equation (B.4) above, µobs and σobs are not independent

of mortality ν. However, greater precision in mortality ν is possible when survival data are available too.

Sometimes, detailed survival data are not available, but the number, or proportion, of individuals surviving until tc

is reported. Data sets marked "2p†" (in table S1) reported the proportion of individuals surviving each experimental

temperature, π, plus the total sample size at the start of each experiment, SPre
total. The proportions π were used in

the imputation of SPost (B.4). The posterior likelihood of daily survival ν, given {µ, κ}, was given by the beta-

binomial model

f(ν|µ, κ, SPre, SPost) ∝ π̂SPost
(1− π̂)S

Pre−SPost
, (B.5)

where π̂ = 1−∑tc
t=1 pm(t).

B.3.1 Bayesian model for expected fecundity

Fecundity data obtained from the gonotrophic cycle experiment (marked “3” in table S1) provided the number

of eggs laid at the end of each gonotrophic cycle. The posterior likelihood for the expected fecundity given this
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data was obtained using the following approach. Expected fecundity at each temperature was estimated from

oviposition data using a Poisson model with Jeffrey’s prior, resulting in posterior distributions

FA(Tk) ∼ Gamma
(

shape =
1

2
+

NTk∑

i=1

niTk , rate = NTk

)
(B.6)

where, at temperature Tk, NTk is the number of observed ovipositions and niTk is the fecundity of the ith

oviposition. As for survival and development, a unimodal constraint with respect to temperature was used to

facilitate unimodal spline interpolation (see section B.7).

B.4 Imputation of missing data

Three of the data sets used for modeling the Culicoides life cycle presented missing sample size data (see table

S1). Bayesian imputation steps to account for associated uncertainties are described here.

Sample sizes at experimental temperatures Tk were typically reported in one of the two forms : the sample size

at the start of maturation experiment k, SPre
k , and the sample size at the end of a maturation experiment k, SPost

k . It

was assumed that any differences between SPre
k and SPost

k could be accounted for by mortality and right censoring.

In Vaughan et al.’s egg and pupae studies, the total sample size SPre
total was published, but how those numbers

were divided among the five experimental temperatures was missing data. Moreover, neither SPost
k or SPost

total

were published, although the proportion that survived each experiment, πk, was available. The duration of the

experiment was not published, curtailing the possibility to account for potential right censor. It was assumed a

priori that the expected sample sizes in each of the nT experimental temperatures were equivalent. Dropping the

k notation for brevity, this gave the following prior for each experimental group,

SPre
1 , . . . , SPre

nT
∼ Multinomial

(
SPre

total,
1

nT
, . . . ,

1

nT

)
. (B.7)

The proportions πk that survived at each experimental temperature Tk permitted imputed values for SPost
k to be

determined as

SPost
k = πkS

Pre
k . (B.8)

In the Mullens and Rutz egg data, a total sample size at the end of the maturation experiment was reported, but
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how those sample sizes were distributed among the different temperature groups was not reported. However, those

authors did note in their paper that those values were roughly equivalent. Thus, we adopted the following prior

SPost
1 , . . . , SPost

nT
∼ Multinomial

(
SPost

total,
1

nT
, . . . ,

1

nT

)
. (B.9)

B.5 Posterior distributions of Culicoides IPLM model parameters

For stages S = {egg, adult}, posterior densities of parameters at each experimental temperature were of the form

f(µS , κS , νS , rS , ŷS |yS ) ∝ f(yS |µS , κS , νS , rS , ŷS )fU (µS , κS )fU (νS )f(rS )f(ŷS ), (B.10)

where yS represents the full set of data, from different various sources, for stage S at a given empirical temperature,

U indicates the unimodality constraints, and ŷS represents imputed missing data. Recall, unimodal constraint U

includes: 1) unimodal response of parameters ν, P01 and P99 to temperature, and 2) unimodality in f(∆|α1, α2),

which is ensured when both α1 and α2 are greater than one. Posterior densities for larvae and pupae parameters

per experimental temperature were

f(µL, µP , κL, κP , νL, νP , rL , rP , ŷP |yP ,yLP ) ∝fU (µL, κL)fU (νL)f(rL)fU (µP , κP )fU (νP )f(rP )f(ŷP )

× f(yP |µP , κP , νP , rP , ŷP )

× f(yLP |µL, κL, νL, µP , κP , νP , rL , rP ). (B.11)

Likelihoods for data yE , yP and yA were calculated from sojourn-mortality distributions obtained by

projecting the unit pulse vector (nT , cS )0 = (1, 0, . . . , 0)T with equation 2.5) ( main text). The likelihood for

yLP was calculated similarly using the following two-stage projection matrix for the IPM-approximation:

MLP =




WL 0 0

BL WP 0

0 B1
P 1



. (B.12)
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B.6 MCMC strategy

For the Culicoides IPLM model, stage-specific parameters µ, κ and ν were transformed to the logit scale, as in

Chapter 2 (Appendix A.4). In this case, target posterior distributions were sampled using a parallel tempering

algorithm (Swendsen and Wang, 1986; Liu, 2008; Łącki and Miasojedow, 2015) adapted from NIMBLE’s

library of functions for adaptive MCMC. Tempering was not applied to the transformed priors (equations (A.14-

A.16) since the prior on the original scale is already flat, neither was tempering applied during the imputation

steps. Depending on the analysis, the tempering was performed with temperature ladders of 10 to 15 different

temperatures (nTemps). Temperature ladders were initialised as T = elog(0×10), elog(1×10), . . . , elog(nTemps×10) and

were adjusted to target a 0.234 acceptance rate using techniques described in (Łącki and Miasojedow, 2015) during

an adaptive burn-in phase.

A burn-in period, consisting of a series of runs of 104 iterations was iterated until LP run < 2 + LP run−1,

where LP run is the mean log posterior density of the model over a given short run. Expected sample size (ESS)

(Plummer et al., 2006) was calculated for each parameter from the final pre-run. Thinning was set to 2×min(ESS),

to remove much of the auto-correlation from subsequent samples. Thereafter, 104 thinned post-adaption MCMC

samples were generated per model and convergence diagnostics were performed using CODA.

To avoid mixing difficulties in the Culicoides study, the above sampling strategy was applied with resolution

parameters fixed at values (or combinations of values for larvae-pupae) given by rE , rP , rA ∈ {1, ..., 50} and

rL ∈ {1, ..., 15}. Integration over each rS ∈ {rE , rA} was achieved in a post-MCMC step by sampling among

lines of model output with weights

wl(rS) =
fl(µ,κ, s, ŷ|y, rS)∑50
r′S=1 fl(µ,κ, s, ŷ|y, r′S)

, (B.13)

where l ∈ {1, ..., 104} indicates the MCMC output line. For the larvae-pupae analysis, equation (B.13) was

adjusted to include integration over both rL and rP such that

wl(rL, rP ) =
fl(µ,κ, s, ŷ|y, rL, rP )∑15

r′L=1

∑50
r′P=1 fl(µ,κ, s, ŷ|y, r′L, r′P )

. (B.14)

These post-MCMC sampling steps generated a unique MCMC output file per stage and further CODA diagnostics
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were performed on those outputs. NIMBLE and R scripts used in these analyses are available on github

https://github.com/scastano/IPLM_code.

B.7 Unimodal cubic Hermite spline interpolation

Posterior estimates of logit(P01S), logit(P99S), logit(νS ) and log(FA) at unsampled temperatures were obtained

via interpolation with unimodal (i.e. up to two piece-wise monotonic) cubic Hermite splines. Recall, given n

points (xk, yk), where k ∈ {1, . . . , n} and xk < xk+1 for all k, a cubic Hermite spline between two successive

points is defined

finterpolated(t) = ykh00(t) + (xk+1 − xk)mkh10(t) + yk+1h01(t) + (xk+1 − xk)mk+1h11(t), (B.15)

where mk is the gradient at point k, t = x−xk
xk+1−xk and hii are the cubic Hermite spline basis functions h00(t) =

(1 + 2t)(1− t)2, h10(t) = t(1− t)2, h01(t) = t2(3− 2t) and h11(t) = t2(t− 1). Equation (B.15) is available in

R as splinefunH in the stats package.

The Fritsch-Carlson method (Fritsch and Carlson, 1980) provides a deterministic algorithm for setting

gradients mk such that the fitted spline is piece-wise monotonic. Pseudo-code for a classic implementation of

the Fritsch-Carlson method is given in Algorithm B.7.1.

We use a stochastic variation of the Fritsch-Carlson algorithm that permits uncertainty in gradients mk to be

explored within the piece-wise monotonic constraint α2
k + β2

k < 9. We assume throughout that the set of points

(x1, y1), . . . , (xn, yn) contains at most one local maximum – a condition used as a constraint during MCMC.

Moreover, we initialise each mk with a draw from the following unconstrained conditional (on y) priors,

arctan(mk) ∼





Uniform
(

arctan(∆k), arctan(∆k−1)
)

if yk−1 < yk and yk > yk+1, else

Uniform
(
0, arctan(3∆k−1)

)
if yk−1 < yk, else

Uniform
(

arctan(3∆k−1), 0
)

if k s.t. yk−1 > yk

(B.16)

where ∆0 = ∆1 and impose the constraint that α2
k + β2

k < 9, which truncates these priors, to avoid “overshoot”.

We use a stepping-in algorithm to re-sample arctan(mk) wherever the unimodality constraint is violated. Pseudo-

code for this sampling strategy is given in Algorithm B.7.2.
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Algorithm B.7.1: FRITSCH-CARLSON METHOD(x,y)

comment: Set slopes of secant lines

∆k = x−xk
xk+1−xk ∀ k ∈ {1, n− 1}

comment: Initialise tangents

m1 = ∆1 and mn = ∆n−1

for k ∈ {2, n− 1}

do





mk =
∆k−1+∆k

2
if sign(∆k−1) 6= sign(∆k)

then mk = 0
if ∆k = 0

then mk = mk+1 = 0
comment: Derive parameters α and β

αk = mk/∆k ∀ k ∈ {1, n− 1}
βk = mk+1/∆k ∀ k ∈ {1, n− 1}
comment: Reset gradients where monotonic constraint is violated

for any k s.t. α2
k + β2

k > 9

do




mk = 3αk∆k√

α2
k+β2

k

mk+1 = 3βk∆k√
α2
k+β2

k

Finally, for each stage S (suffix dropped for brevity), development kernel parameters α1 and α2 at any

temperatures T absent in the set of experimental temperatures for S were derived from interpolated values P01(T )

and P99(T ) by numerical minimisation. Thus, α1T and α2T were calculated as

α1T , α2T = arg minα1,α2

∑

p∈{1,99}

(
P̂p(α1, α2)− Pp(T )

)2
, (B.17)

where P̂p(α1, α2) was calculated with R function qbeta and minimisation was performed using the Nelder-Mead

algorithm of R function optim.
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Algorithm B.7.2: STOCHASTIC UNIMODAL CUBIC SPLINE(x, y)

comment: Set slopes of secants and identify mode

∆k = x−xk
xk+1−xk ∀ k ∈ {1, n− 1} and kmax = arg maxk(yk)

comment: Initialise bounds and sample gradients

for k ← 1 to n

do





if k = kmax and k 6∈ {1, n} then Lk = ∆k and Uk = ∆k−1

else if yk < yk+1 then Lk = 0 and Uk = 3∆k−1

else if yk > yk+1 then Lk = 3∆k−1 and Uk = 0
arctan(mk) ∼ Uniform(arctan(Lk), arctan(Uk))

αk = mk/∆k and βk = mk+1/∆k ∀k ∈ 1, . . . , n− 1
while max{α2

k + β2
k : k ∈ 1, . . . , n− 1} > 9

do





κ = arg maxk(α
2
k + β2

k)
if βκ > ακ then κ = κ+ 1
if κ = kmax and mκ < 0 then Lκ = mκ

else if κ = kmax and mκ > 0 then Uκ = mκ

else if κ < kmax then Uκ = mκ

else if κ > kmax then Lκ = mκ

arctan(mκ) ∼ Uniform(arctan(Lκ), arctan(Uκ))
αk = mk/∆k and βk = mk+1/∆k ∀k ∈ 1, . . . , n− 1



Appendix C

Appendix to Chapter 4

C.1 A brief description of the synthetic likelihood method

The synthetic likelihood (SL) 1 is a modern simulation-based approach for making statistical inference from noisy

and highly non-linear dynamic systems (Wood, 2010). It can be used for statistical inference with state-space

models to provide a “synthetic” likelihood for use in optimisation or MCMC algorithms. In a Bayesian context,

the idea is to provide an approximation of the posterior p(θ|y). Note, that the state x is marginalised out of this

posterior via Monte Carlo simulation.

Like Approximate Bayesian Computation (ABC), the SL is based on a set of summary statistics that

characterises the variation in observed and simulated data sets. Unlike ABC, the SL method makes the assumption

that the distribution of summary statistics s can be approximated by a multivariate normal distribution

s ∼ N
(
µθ,Σθ

)
(C.1)

with µθ the mean vector and Σθ the associated covariance matrix. For the true data yobs, both µθ and Σθ are

unknown, since they are generally intractable functions of the vector of unknown model parameters, θ. However,

for any given θ they can be estimated by simulating replicated data from the model, in which case a sort of

“synthetic likelihood” can be evaluated (Fig. C.1).

Based on s, the synthetic likelihood of any given parameter vector θ can be evaluated as follows. First
1adapted from (Wood, 2010)
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we parameterised the model via Θ to simulate Nr replicate data sets, y∗1,y
∗
2, . . . ,y

∗
Nr

. We then convert these

to replicate statistics s∗1, s
∗
2, . . . , s

∗
Nr

, exactly as y was converted to s. Then we evaluate µ̂θ =
∑

i s
∗
i /Nr,

S = (s∗1 − µ̂θ, s∗2 − µ̂θ, . . . ) and, hence, Σ̂θ = SST /(Nr − 1) (Ling, 1990). Dropping irrelevant constants, the

log synthetic likelihood is

ls(θ) =
1

2
(sθ − µθ)T Σ̂−1

θ (sθ − µθ)T −
1

2
log|Σ̂−1

θ |. (C.2)

Like any log likelihood, ls(θ) measures the consistency of the parameter values θ with the observed data.

Figure C.1. A schematic representation of calculating a synthetic likelihood. From the top, we wish to evaluate the fit of the model

with parameter vector θ to the raw data vector y. Replicate data vectors y∗1, . . . ,y∗Nr
are simulated from the model, given θ. Each

replicate, and the observed or “true” data y, is converted into a vector of statistics, s∗i or s , in the same way. The s∗i are used to estimate

the mean vector µ̂θ , and covariance matrix, Σ̂θ , of s, according to the model with parameters θ. We use µ̂θ , Σ̂θ and s respectively as the

mean vector, the covariance matrix and the argument of the log multivariate normal (MVN) probability density function, to evaluate the

log synthetic likelihood, ls. Adapted from (Wood, 2010).

This method is general enough to deal with hidden state variables, complicated observation processes, missing

data and multiple data series. Calculated as described, ls is invariant to reparameterisation and is robust to the

inclusion of uninformative statistics, so very careful selection of statistics is not strictly necessary provided the

set of statistics characterises key features of the dynamics. There is complete freedom to transform statistics to

improve the Normal approximation in equation C.2. Furthermore, ls behaves like a conventional log likelihood in
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the limit as Nr → ∞, giving access to much of the machinery of likelihood-based inference. For example, in the

current thesis (chapter 4) ls is used with a standard adaptative Metropolis-Hastings sampler.

C.1.1 Choice of summary statistics

The aim when generating summary statistics from some raw data series y is to quantify local dynamic structure

and the distribution of observations (Tavaré et al., 1997; Wood, 2010). There is no rule to provide the choice of

summary statistics; the most common approach is an ad hoc exploration of different combinations of summary

statistics in order to improve fitting.

In our study (chapter 4, section 4.2) we define the adult abundance data set to which we fit our model as the

true data set and each model simulation as a simulated data set. Let N1:t represent the series of adult density

observations. In this preliminary study, the following summary statistics were considered: (1) mean of N1:t; (2)

standard deviation of N1:t; (3) the median of N1:t; (4) number of days where adult abundance was above the 0.9

percentile of the true data; and (5) the coefficients of the autocovariance function to lag l, where lag l was chosen

to correspond to the first non-positive coefficient for the true data set in question.



Appendix D

Article: Lefkovitch matrices meet integral

projection models: quantifying the effects of

individual heterogeneity in hidden

developmental processes

The following article has been submitted on January 16th to the journal Methods in Ecology and Evolution, and is

composed of most of the developments presented in chapters 2 and 3 of this thesis.
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Abstract1

1. The predictive performance of many stage-structured population models is limited by unrealistic assumptions2

regarding individual variation. Errors become particularly prominent when fluctuating conditions affect vital rates3

differentially across stages. Integral projection models (IPMs) enable more realistic individual heterogeneity4

assumptions. However, IPMs perform badly when appropriate developmental trait (e.g. size, weight) data are5

prohibitively difficult to obtain.6

2. To overcome these limitations, we incorporate IPMs for within-stage development into classic Lefkovitch7

matrix (CLM) models, and fit the model using maturation-time data. A Bayesian inference framework is8

developed and tested in two case studies. First, the estimation procedure was tested using data simulated9

from a model where unmeasured individual-level fixed-traits generate correlated maturation-times. Second, a10

temperature dependent model was fit to Culicoides (biting midge) experimental maturation-time data, permitting,11

for the first time, an analysis of transient dynamics for these insects under fixed and seasonal temperatures.12

3. The simulation study demonstrated that accurate maturation-time distributions can be estimated using data13

from modestly sized marked cohort studies – even when individual-level fixed-traits correlate maturation-times.14

The Culicoides study indicated that: the posterior likelihood of a CLM model was negligibly small compared15

to the new model; the non-linear responses of vital rates to temperature differed markedly among stages; the16

inclusion of within-stage development greatly augmented the amplitude and duration of transient dynamics and17

altered maximum and minimum inertia.18

4. By tracking within-stage development, the new matrix model greatly reduces stage-duration errors,19

improves robustness to perturbation, and enables realistic incorporation of both time-varying covariates and/or20

unmeasured local or genetic factors. Moreover, by using maturation-time (and not size) data, our methods can21

greatly improve the precision of stage-structured IPMs whenever size is a poor, or unavailable, predictor of stage22

duration. This scenario is ubiquitous in ecology: egg and exoskeleton dimensions often remain relatively constant,23

and more appropriate developmental metrics can be too expensive or difficult to collect routinely. The new model24

enables improved ecological forecasting, mechanistic niche modelling, demographic compensation analysis25

and eco-evolutionary analysis for stage-structured taxa. Diverse applications are expected for conservation,26

agricultural, epidemiological or theoretical purposes.27
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1 Introduction28

A central premise of population biology is that the timing of life-cycle events drive a population’s dynamics29

(Caswell, 2006). When life-cycles progress via a series of developmental stages, describing how each stage’s30

vital rates vary with genetic and environmental factors provides a basis for studying a population’s dynamics31

(Manly, 1990). Analysis and simulation with stage-structured models (SSMs) has featured numerous biological32

complexities including density-dependence, stochasticity, time-varying parameters and dispersal (Van Tienderen,33

1995; Cushing et al., 2002). However, the assumptions of many SSMs, regarding variation in the time required to34

mature through a given stage (i.e. the maturation-, development- or sojourn-time), are oversimplified, unrealistic35

and lack generality. This can result in poor stage-duration distribution (SDD) approximations and inaccurate36

predictions of population growth rates and related quantities (Bolnick et al., 2011; Vindenes and Langangen,37

2015). Overcoming these shortcomings would significantly increase the forecast horizon (Petchey et al., 2015) of38

SSMs.39

Most SSMs are developed as Markov processes where between-stage transition probabilities are independent40

of the time-duration spent in a given stage. This generates memoryless (exponential or geometric) SDDs with41

artifactual most-likely stage-durations. For discrete time models, a time-step ∆t might be chosen to minimise42

errors generated by the geometric SSDs (Cushing et al., 2002), but the values of ∆t required for different stages or43

environmental conditions may vary. Alternatively, additional sub-stages provide greater SDD flexibility (Longstaff,44

1984; Birt et al., 2009), but in these approaches sojourn-time variance is tied to the number of sub-stages making45

the incorporation of time-varying covariates elusive.46

Delay equations provide an alternative (Nisbet, 1997). In their basic form SDD variance is zero, although47

delays can be distributed (Berezansky et al., 2010) or modeled with covariates (Yamanaka et al., 2012) to improve48

realism. However, these models lack generality because delays are determined at one point in time and are49

impervious to subsequent changes in covariates.50

Markov or delay assumptions generate negligible artifacts when stage distributions are stable. However, when51

exogenous factors (environmental fluctuations or biotic interactions) affect stages differentially, these assumptions52

yield inaccurate characterisation of transient and/or non-linear dynamics (Blythe et al., 1984; Bierzychudek, 1999).53

Stage-duration distribution models (SDDMs) provide an empirical alternative. Based on survival analysis –54

the statistical characterisation of time-to-event data – SDDMs explicitly model SDDs, typically by fitting two-55

parameter probability distributions to cohort data at each stage (Manly, 1990; Hoeting et al., 2003). This approach56
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has been used for estimating mortality and correlated SDDs in stable environments (De Valpine and Knape, 2015)57

and tracking degree-day accumulation in synchronised insect cohorts (Murtaugh et al., 2012). But, as for delay58

equations, these models do not track within-stage development and challenges arise when incorporating time-59

varying development rates. This limitation is overcome when individual-based models (IBMs) are parameterised60

with SDDM output (Régnière et al., 2012). However, computational costs can prevent IBMs from scaling well and61

more general solutions are required. Despite improved realism, wider application of SDDMs has been elusive due62

to the need to incorporate fluctuating conditions, density-dependence, or other feedback mechanisms.63

Integral projection models (IPMs) offer a promising alternative (Easterling et al., 2000). An IPM tracking64

within-stage development could maintain projection validity even when stage distributions are unstable (De Valpine,65

2009). Typically, IPM-kernels are parameterised using regression analyses of time-lagged traits such as size or66

weight (Rees et al., 2014). The approach has become popular in plant (Ellner and Rees, 2007; Merow et al., 2014)67

and animal (Coulson et al., 2011; Ozgul et al., 2012) studies where key traits are easily measured. But IPMs68

are rarely used when direct measurement of state variables – such as accumulated contamination, parasitic load,69

physical damage, or degree-days – is impracticable. Moreover, size can be a poor predictor of stage duration, for70

example when eggshells, exoskeletons or hosts effectively hide within-stage development. In these scenarios, more71

performant development metrics are often too difficult or expensive to collect routinely. Where IPMs have been72

used to model egg stages, assumptions leading to geometric maturation-time distributions, and thus bias, have been73

used (Ozgul et al., 2012; Smallegange et al., 2014).74

Here, we extend standard matrix models by incorporating IPM approximations that track individuals through75

a series of developmental sub-stages to yield more realistic SDDs. Estimation is achieved by treating within-stage76

development as an unobserved state variable. These new "integral projection Lefkovitch matrix" (IPLM) models77

facilitate parameterisation with time-varying covariates, provide valid transition probabilities for non-stable stage78

distributions, and reduce errors in transient or non-linear dynamics analyses. They can therefore improve SSM79

forecast horizons.80

In section 2, we outline the IPLM framework and describe how to parameterise these models using maturation-81

time data. In section 3, we test our estimation methods in a simulation study where variance in individual quality82

generates correlated sojourn-times. In section 4, we show how laboratory data on biting midge development83

at different temperatures can be used to fit an IPLM model for predicting population dynamics in the field that84

demonstrates more realistic dynamics than when developmental heterogeneity is neglected. Finally, in section 585

we discuss the implications of these developments for ecology and evolution.86
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2 Integral projection Lefkovitch matrices87

Lefkovitch matrix models. The following recursive formula is a popular tool for studying demographic dynamics88

Nt = MtNt−1, eqn 1

where Nt denotes a vector of densities for a series of k age (Leslie, 1945) or stage (Lefkovitch, 1965) classes at89

time t and Mt is a projection matrix. Lefkovitch (i.e. stage-structured) matrices can be constructed in many ways90

to match the great diversity of life-cycle strategies found in nature. Here, we focus on matrix models of the form:91




n1

n2

n3

· · ·

nk




t

=




W1 F2 F3 · · · Fk

B1 W2 0 · · · 0

0 B2 W3
. . .

...
...

. . . . . . . . . 0

0 · · · 0 Bn−1 Wk



t




n1

n2

n3

· · ·

nk




t−1

. eqn 2

We call the matrix in eqn 2 a ‘classic Lefkovitch matrix’ (CLM). A tempting misinterpretation of eqn 2 is that,92

in time-step t, individuals in some stage S ∈ {1, . . . , k} remain with probability W
S

, advance one stage with93

probability B
S

, contribute to the next generation with fecundity F
S

and survive with probability ν
S

= W
S

+ B
S

.94

However, this neglects within-stage developmental heterogeneity, assumes geometric sojourn-time distributions95

and only yields valid transition probabilities when stage distributions are stable (De Valpine et al., 2014). Thus,96

such matrices can generate highly erroneous results unless vital rates are relatively constant and impervious to97

exogenous sources of variation.98

Within-stage development. These limitations can be overcome by replacing scalar elements W
S

, B
S

and99

F
S

of matrix Mt with sub-matrices W
S

, B
S

and F
S

characterising within-stage development, between-stage100

development and fecundity respectively. Thus, every scalar n
S

of eqn 2 is replaced by n
S

, a vector of r
S

discrete101

sub-stages. Note, r
S

can vary between stages.102

We define sub-matrices W
S

, B
S

and F
S

via stage-specific IPMs. Unlike previous models (Longstaff, 1984;103

Birt et al., 2009), this improves SDD approximations independently of r
S

. An IPM for within-stage development104

can be written105

n(δ′, t) =

∫ 1

0

KΘ(δ, δ′)n(δ, t− 1)dδ, eqn 3
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where n(δ, t) is the density of individuals with developmental status δ at time t, Θ is a parameter set, and the106

IPM-kernel KΘ(δ, δ′) quantifies the proportion of individuals with development δ that survive and develop to δ′107

in one time-step. Transition to next stage occurs once δ ≥ 1, whereby development in the new stage is initialised108

with δ = 0.109

For practical purposes, we simplify eqn 3 by assuming that the increments by which individuals develop are110

drawn independently from a distribution at each time step. Therefore, we re-write KΘ(δ, δ′) as KΘ(∆), with111

∆ = δ′ − δ. In the examples below, we use for KΘ a beta distribution with parameters {µ, κ} accounting for112

developmental rate heterogeneity, combined with survival probability ν. The beta distribution is a natural choice113

since δ ranges in [0, 1) for each stage. This model provides the same level of parsimony as SDD models: each114

defines the distribution of sojourn-times and mortality with three parameters. In our model, the stage-specific115

kernel propagates individuals through a developmental process to derive probabilities of stage completion or death116

in any given time interval – these probabilities provide the basis for estimating parameters from data. Consequently,117

some computation time is required for fitting, but the benefit is a model formulated in discrete time-steps that can118

accommodate time-dependent parameters.119

Like other IPMs, we approximate the continuous state variable δ by a series of discrete states. Given a series120

of discrete states between 0 and 1, we calculate the probability pl of completing l discrete increments in a time-121

step by integrating KΘ over an interval (see Appendix S1, Supporting Information). These transition probabilities122

provide, for a stage S, elements for the following r
S
× r

S
lower-triangular matrix:123

W
S

= ν
S




p
0,S

p
1,S

p
0,S

0
p

2,S
p

1,S
p

0,S

...
...

. . .

p
r−1,S

p
r−2,S

p
0,S




. eqn 4

Note, the probabilities {p
0,S
, . . . , p

r,S
} depend on the stage-specific parameters {µ

S
, κ

S
, ν

S
}. Matrix B

S
124

provides the proportion of individuals making the transition to the next stage, where development is initialised in125

the first sub-stage. Thus, if B1
S

denotes the first row of matrix B
S

, element j of B1
S

is
∑r
l=r+1−j pl,S

. Each matrix126

F
S

is constructed assuming all individuals completing stage S contribute F
S

to the next generation. Thus, the first127

row of F
S

is F1
S

= F
S
B1

S
. All other elements of B

S
and F

S
are zero and F

S
= 0 for non-reproductive stages.128
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Alternative definitions for B
S

and F
S

are possible, but are not explored here for simplicity.129

The matrix approximation of the IPM (eqn 3) for stage S is therefore130




n
S

c
S



t

=




WS 0

B1
S 1



t




n
S

c
S



t−1

, eqn 5

where n
S

gives the population density in the r
S

sub-stages, and c
S

is the cumulative density of individuals that131

have completed stage S. We call Θ
S

= {µ
S
, κ

S
, ν

S
} the parameter set of the discretised IPM-kernel.132

The augmented equivalent of eqn 2 is133

Nt =




W1 F2 F3 . . . Fk

B1 W2 0 . . . 0

0 B2 W3
. . .

...
...

. . . . . . . . . 0

0 . . . 0 Bm−1 Wk



t

Nt−1, eqn 6

where N T = (nT
1
, . . . ,nT

k
) and the model parameter set is Θ = {Θ1, . . . ,Θk}. We call any matrix built on these134

principals an integral projection Lefkovitch matrix (IPLM). When all r
S

= 1, an IPLM reduces to a CLM. In135

practice, we seek r
S

small enough to maintain computational efficiency yet large enough to characterise sojourn-136

time variance for stage S. Since the dimension of Θ
S

is independent of r
S

, parsimony is unaffected as matrix137

dimension increases. The k IPM-kernels of an IPLM can incorporate fluctuating environmental conditions and138

other sources of heterogeneity. Thus, these developments can greatly augment the range of scenarios studied with139

the powerful tools of matrix model analysis.140

IPLM based survival analysis. We consider fitting IPLMs using either marked or unmarked cohort development141

data. Marked cohort data provide the time or time-interval of each stage transition per individual. Unmarked cohort142

data include the number of individuals maturing from a stage in a time interval given that their development was143

synchronised at t = 0. Typically, the number dying in one or more time intervals is also reported. We leave the144

harder problem of fitting an IPLM to partially observed time-series data from overlapping generations – which145

often arises in studies of natural insect populations – to future work.146

When within-stage development is unmeasurable, the regression approach for fitting size-based IPM-kernels147

is unfeasible. Instead, we take a SDDM inspired approach where the likelihood of observed stage-duration data148
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y
S

depends on the probabilities (given Θ
S

) of surviving and completing stage S in each time-step. We calculate149

these probabilities by iterating the discretised IPM. Specifically, we: 1) initialise n
S
(t = 0) = (1, 0, . . . , 0)T and150

c
S

= 0; 2) project n
S
(t) forward (eqn 5); 3) for each t, record the matured proportion c

S
, and the loss of density151

over the vector (nT
S
, c

S
)t, to construct a sojourn-mortality distribution (Fig. 1); and 4) use these probabilities to152

evaluate the likelihood of data y
S

given Θ
S

. For marked data, individual-level covariates or random effects (e.g.153

individual qualities) can be included via individual-specific kernel calculations.154

Heterogeneity in developmental rates – represented by the increments ∆ – is modelled by the beta distribution155

(see Appendix S1) with PDF156

f(∆|θ) =
∆α1−1(1−∆)α2−1

B(α1, α2)
, eqn 7

where θ = {α1, α2} are parameters and B(·, ·) is the beta function. Bi-modality is avoided by constraining α1157

and α2 to be greater than one. Since α1 and α2 do not yield biological interpretation, we use the alternative158

parameterisation θ = {µ, κ}, where µ = E[∆] = α1

α1+α2
is the expected developmental increment and κ ∈ (0, 1)159

is a scale parameter such that Var(∆) = κµ(1 − µ). The probability pl of completing l discrete increments in a160

time-step is thus161

pl = F ( l+1
r+1 |θ)− F ( l

r+1 |θ), eqn 8

where F (∆|θ) is the CDF associated with f(∆|θ).162

We adopt a Bayesian approach to estimate stage-specific parameters {µ, κ, ν, r}. Throughout, we use standard163

uniform priors for {µ, κ, ν} and the prior Uniform(0, RMax) for r, where RMax is a maximum resolution chosen to164

be large enough to optimise model fit but small enough to maintain computational efficiency. Markov chain Monte165

Carlo (MCMC) (Gelman et al., 2003) enables sampling posteriors of the form166

f(µ, κ, ν, r|y) ∝ f(µ)f(κ)f(ν)f(r)f(y|µ, κ, ν, r), eqn 9

where y represents a set of independent data sets (Appendix S9).167

We demonstrate these techniques with two case studies. The first, a simulation study, tests our parameter168
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estimation procedure with an IPLM model in which (time-fixed) random variables, quantifying individual quality,169

generate correlated sojourn-times. The second, constructs a temperature-dependent IPLM for a poikilothermic170

population by estimating development kernels from laboratory cohort data at different temperatures and using171

non-parametric regression to estimate non-linear effects of temperature on the development kernel. The resulting172

model is used to predict the effects of development heterogeneity on asymptotic and transient dynamics under173

seasonally varying temperatures. NIMBLE (NIMBLE Development Team, 2016; De Valpine et al., 2016) and R174

(R Core Team, 2013) code for both studies is available (see Supporting Information).175

3 Case study I: simulation study with correlated stage-durations176

To test the identifiability of IPLM parameters, a simulation-estimation experiment was conducted. Motivated by177

recent directions in eco-evolution, the basic IPLM model was modified to incorporate correlated stage-durations178

arising from heterogeneous individual qualities. Quality parameters are used in eco-evolution to parsimoniously179

quantify net effects of genetic or local factors on vital rates (Wilson and Nussey, 2010; Vindenes and Langangen,180

2015) and generate correlated stage-durations (De Valpine, 2009). Despite much theoretical work, the estimation181

of individual qualities, associated sojourn-mortality distributions and their evolutionary consequences in real182

populations remains challenging. Here, we outline how Gaussian copulas (Kruskal, 1958) enable individual183

qualities to condition IPLM kernels, and demonstrate that, even with modest sample sizes, a quality-dependent184

IPLM fitted to simulated marked-cohort data for just two sequential stages can accurately reproduce sojourn-185

mortality distributions.186

Quality conditioned development. Copulas are tools for modelling correlations in arbitrary sets of random187

variables (Hougaard, 2012). Here, individual quality (q) and development increments (∆) are correlated via188

Gaussian copulas. We assume q is fixed through an individual’s lifespan and conditions the distribution of189

increments at each time-step.190

Let f∆(∆|α∆) and F∆(∆|α∆) denote the marginal (beta) PDF and CDF of developmental increments, with191

parameters α∆ . Let fq(q|αq) denote the marginal PDF of individual qualities, with CDF Fq(q|αq) and parameters192

αq . We assume q follows a standard uniform distribution, noting that any other distribution could be derived via193

a probability integral transform. A Gaussian copula with correlation ρ was used to establish the joint distribution194

f(∆, q, |α∆ ,αq, ρ) while preserving the specified marginal distributions (Appendix S2). This implicitly defines195

the conditional distribution of development increments given quality, f
∆|q(∆|α∆

, q, ρ), and its corresponding196
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CDF, F
∆|q(∆|α∆

, q, ρ). The later provides the matrix elements pl given q:197

pl|q = F∆|q(
l+1
r+1 |α∆

, q, ρ)− F∆|q(
l

r+1 |α∆
, q, ρ). eqn 10

Since stage-durations of individuals are correlated via q, unique IPM-kernels are required for each individual at198

each stage.199

Simulation. A two-stage development study, following N = 50 individuals for tc = 21 days, was simulated200

500 times. In each simulation, {µ1, κ1, ν1, r1 µ2, κ2, ν2, r2}, q = {q1, . . . , qN} and ρ were drawn initially201

from Unif(0, 1), r1 and r2 from Unif(0, 100), and rejection sampling (Appendix S3) was used to ensure: 1)202

all parameters α of the density f∆(∆|α1, α2) were greater than one, and 2) the number of individuals completing203

both stages was greater or equal to Nmin = 35.204

The fate of each individual i in each stage was described by two pieces of information: 1) the time-to-event,205

yiA ∈ {1, . . . , tmax}; and 2) the event-type, yiB ∈ {stage completion, mortality, censor}. Probabilities associated206

with combinations of yiA and yiB were obtained as follows. The probabilities pl|qi permitted conditional (on207

quality) construction of the IPM-approximation, eqn 5. The unit pulse vector (nT , c
S
)0 = (1, 0, . . . , 0)T was208

projected to give, for each time-step t ∈ {0, . . . , tmax}, the probabilities to complete a stage, pd(t|qi), or to die,209

pm(t|qi). The probability of right-censor beyond tmax is pci = 1 −∑tmax
t=1

(
pd(t|qi) + pm(t|qi)

)
. For stage 1,210

tmax = tc. Death, or right-censor at tc, in stage 1 imposes that pci = 1 for stage 2. Otherwise, for stage 2, tmax is211

t
(i)
max = tc− t(i)s2 , where t(i)s2 is the time-step that individual i enters stage 2. The probabilities pd(t|qi), pm(t|qi) and212

pci define the right-censored sojourn-mortality time distribution for individual i in a given stage. Individual-level213

data were sampled from the categorical distribution,214

(yiA, yiB) ∼ Categorical
(
pd(1|qi), pm(1|qi), . . . , pd(tmax|qi), pm(tmax|qi), pci

)
. eqn 11

For each simulation and stage, the "true" mean (µ̃) and standard deviation (σ̃) of maturation-times and the215

probability to survive to maturation (ν̃) were calculated (Appendix S4) from probabilities pd(t) and pm(t), using216

the marginal F∆(∆|α∆) to evaluate eqn 8.217

Estimation. For each simulation, the posterior distribution218
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f(µ,κ,ν, r,q, ρ|y
S1
,y

S2
) ∝ f(ρ)f(q)

∏

s∈{S1,S2}
f(µs)f(κs)f(νs)f(rs)

N∏

i=1

f(yis|µs, κs, νs, rs, ρ, qi). eqn 12

was sampled using the default block Metropolis-Hastings sampler in NIMBLE. Thinning was set to twice the219

minimum expected sample size obtained from pre-runs (Appendix S9). Thereafter, 104 thinned MCMC samples220

were generated and convergence diagnostics were performed using CODA (Plummer et al., 2006).221

Estimation performance. Posterior medians and 95% credibility intervals (CI95) of the means (̂̃µ), standard222

deviations (̂̃σ) and total survivals (̂̃ν) of the joint sojourn-mortality distribution were plotted against true values (Fig.223

2). Medians were distributed evenly around the 1:1 line and uncertainty was sufficiently small to suggest that the224

sojourn-mortality distribution approximations were accurate given the sample size. Precision was greatest when µ̃225

and σ̃ were small. The CI95s of estimated parameters enveloped true values in approximately 95% of simulations.226

Banding in the posteriors for ν̃ arose from the limited possibilities regarding the number of individuals completing227

both stages.228

In general, the CI95s of estimated values for r1, r2, ρ and {q1, . . . , qN} enveloped the true values (Figs. S1,229

S2). Uncertainty was larger for these parameters than for µ̃, σ̃ and ν̃. The largest CI95s for qualities qi were230

associated with individuals that died in stage 1, and the greatest precision was achieved when sojourn-times were231

right censored (Fig. S2). For fully developed individuals, quality estimates ranged greatly in precision. True vs.232

fitted values of ρ showed that, despite uncertainties in the qi, relatively accurate estimates for ρ were obtained. The233

posterior median and CI95s for resolution were clustered in horizontal bands (Fig. S1), suggesting that model fit234

was not sensitive to resolution so long as resolution was not too small. This implies that very large values of r can235

be computationally superfluous since even relatively low resolutions can yield sojourn-mortality distributions as236

accurate as can be supported by the data.237

These results highlight that quality-conditioned IPLMs can successfully model development and survival in238

marked cohort studies. A two-stage study with N = 50 was used here to indicate what can be possible with239

a typical data set from a small experiment. Naturally, a greater number of individuals or stages would increase240

precision – an important consideration regarding the design of experiments to parameterise eco-evolutionary241

models. Most importantly, we show that even when within-stage development is unmeasurable, realistic IPM-242

based matrix models can be fit using maturation-time data.243
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4 Case study II: seasonal and transient dynamics of biting midges244

Current methods in ecology fail to scale up realistically from laboratory development studies to field predictions245

of population dynamics. This is mainly because they do not provide valid transition probabilities for populations246

with vital rates sensitive to exogenous sources of variation. For example, poikilothermic Ecdysozoa (animals that247

shed exoskeletons) exposed to varying temperatures are rarely modelled using Lefkovitch matrices because these248

models do not track stages accurately under time-varying vital rates. Furthermore, while IPM is regularly used249

to model the dynamics of wild vertebrate or plant populations, it is rarely used to model Ecdysozoan populations250

suject to time-varying parameters. Indeed, for many Ecdysozoa it can be prohibitively difficult to obtain appropriate251

within-stage development data to fit IPMs with time-lagged regression.252

Classically, the dynamics of poikilotherms are modelled using degree-day accumulation (DDA), a physiological253

unit capturing cumulative metabolic responses to temperature (De Reaumur, 1735; Belehradek, 1935). Maximum254

likelihood estimators are available for a stochastic DDA model (Dennis et al., 1986). However, that model neglects255

mortality, doesn’t yield stage-specific parameterisation, requires developmental homogeneity at time zero, uses256

non-monotonic DDA and, as for most DDA models, assumes a linear temperature–development relationship.257

Although linearity works over small temperature ranges (Bonhomme, 2000), non-linearity becomes important258

when temperature fluctuations gain amplitude (Lobell et al., 2011).259

Non-linear degree-day models are available (Briere et al., 1999) and are used to parameterise IBMs (Régnière260

and Powell, 2013). This framework emphasises fitting non-linear expected response curves and treats variance as261

a nuisance parameter. Often, proportionality between SDD mean and standard deviation is assumed (Sharpe and262

DeMichele, 1977), and the covariates or stochastic processes that generate variance are neglected. Moreover,263

proponents neglect that mortality modifies SDDs, and either estimate survival by neglecting SDD shape and264

variance (Régnière et al., 2012) or neglect mortality entirely (Yurk and Powell, 2010). With IPLM models, SDD265

variance arises naturally from a stochastic development-mortality process. Furthermore, the assumptions used for266

estimation and simulation are identical, thereby eliminating potential bias arising from model mismatch.267

Here, we fit a temperature-dependent IPLM to unmarked maturation-time data for biting midges of the genus268

Culicoides at fixed temperatures. We model IPM-kernel parameters as a function of temperature using non-269

parametric regression – the model is fit using biologically justified unimodal constraints, and unimodal spline270

interpolation determines parameters at unmeasured temperatures. The interpolated model is used to analyse271

asymptotic and transient dynamics under fixed and seasonal temperatures.272
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Culicoides IPLM model. Culicoides biting midges attract considerable interest as vectors of numerous viral273

diseases (Mellor et al., 2000). Modelling has provided empirical descriptions of flight-trap data for phenology,274

bio-geography or epidemiological risk studies (Sanders et al., 2011; Guis et al., 2012; Searle et al., 2012; Diarra275

et al., 2015). But these approaches cannot provide all the vital rates required for incorporating vector life-cycle276

dynamics in mechanistic epidemiological models.277

While insufficient Culicoides within-stage trait data (i.e. size, weight) exists for time-lagged regression,278

sufficient maturation-time data exist for fitting temperature-dependent IPLMs. Consider the female only egg-279

larva-pupa-adult model280 


E

L

P

A



t

=




WE 0 0 FA

BE WL 0 0

0 BL WP 0

0 0 BP GA



t




E

L

P

A



t−1

, eqn 13

where GA = WA + BA models multiple gonotrophic cycles. We fitted this model to cohort data from C.281

variipennis egg, pupae and combined larvae-pupae development studies (Mullens and Rutz, 1983; Vaughan and282

Turner, 1987), and to individual-level data from C. nubeculosus fecundity, gonotrophic cycle and egg stage-283

duration studies (Balenghien et al., 2016). Details of each data set are given in Appendix S5. Note, these species284

share similar developmental responses across the 15◦C-35◦C range (Purse et al., 2015).285

For each stage, temperature-dependence was modelled using unimodal splines on survival ν(T ), the 1st and286

99th percentiles (P1(T ) and P99(T )) of the developmental rate distribution f
∆

(∆|α), and (for adults) fecundity287

FA(T ). For this, unimodality constraints on the responses to temperature of these parameters were incorporated288

into the MCMC. The unimodality constraints ensure an optimal temperature for each stage (Sharpe and DeMichele,289

1977; Régnière et al., 2012) and permit shape-constrained interpolation at unsampled temperatures. Interpolation290

was performed, for each line of MCMC output, using unimodal cubic Hermite splines (Appendix S10). This291

non-parameteric regression produces a smoothed unimodal curve analogous to (the piece-wise linear) multivariate292

adaptive regression splines (Friedman, 1991). Note, the spline modelling for ∆ was performed on percentiles293

rather than µ and κ in order to enforce a unimodal response to temperature. Only two percentiles were needed to294

identify µ and κ and the 1st and 99th proved a practical choice.295

Estimation. Details of likelihoods used for model fitting, and missing-value imputation steps, are given in296

Appendices S6 and S7 respectively. Posteriors were sampled using parallel tempering (Swendsen and Wang,297

1986) (Appendices S8, S9). Ten thousand thinned MCMC samples were generated, with thinning and convergence298
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diagnostics performed as in case study I. Estimates of µ(T ) and κ(T ) were obtained via back-transformation of299

the interpolated P01(T ) and P99S(T ) (Appendix S10).300

Resolution. Posterior likelihoods were consistently poor at r
S

= 1, and the CLM’s posterior probability was301

negligible (Fig. 3). Small increases in r
S

yielded large likelihood gains because the CLM’s geometric sojourn-time302

distributions do not fit the data well and IPLM improves fitted sojourn-time distributions in all cases (Figs. S3,303

S4). Maximum a posteriori (MAP) estimates for resolution were r(MAP)
E

= 6, r(MAP)
L

= 9, r(MAP)
P

= 31 and r(MAP)
A

= 8,304

with variable levels of uncertainty.305

Differential Responses to Temperature. Stages differed in their responses to temperature (Figs. 4, S5).306

Generally, the mean and variance of developmental rates increased with temperature. However, eggs, and to a lesser307

extent pupae, exhibited impaired development at high temperatures. Survival was low at the highest temperatures308

for eggs, pupae and adults. Larvae experienced relatively high survival at all temperatures and were the most309

resistant stage to cold – this concurs with field reports of over-wintering success being greatest for larvae (Kettle,310

1962). Nevertheless, the stable stage distribution (dominant eigenvector) did not exhibit clear visual evidence of311

strong temperature-dependence within the range of experimental temperatures (Fig. S7).312

Asymptotic dynamics at fixed temperatures. The asymptotic growth rate (dominant eigenvalue λ1) over313

a 10◦C-40◦C range was similar for CLM and IPLM: both models suggested temperatures in the mid-twenties314

optimise growth, although CLM systematically predicted higher growth rates than IPLM (Fig. S6). Both models315

predicted population decline (λ1 < 1) at high temperatures. The range of temperatures yielding λ1 > 1, and316

uncertainties regarding growth–decline threshold temperatures, were greater for CLM than for IPLM.317

Transient dynamics. To investigate potential effects of temperature perturbations, various indices of transient318

dynamics (Stott et al., 2011) were quantified. The duration of transient dynamics is largely determined by319

the damping ratio of first and second eigenvalues ρ = λ1/|λ2|. Plots of ρ−t indicated slower convergence320

for IPLM than for CLM at all temperatures (Fig. 5). Thus, the relative importance of λ2 increased when321

within-stage developmental heterogeneity was included, and CLM underestimated the duration of transients at322

every temperature. Estimates of maximum amplification (ampmax), maximum attenuation (attmax) and associated323

inertias were all affected when within-stage developmental heterogeneity was excluded, and CLM consistently324

underestimated the amplitude of transient oscillations (Fig. 5).325

Seasonal dynamics. Resolution effects on seasonal dynamics were explored by projecting daily growth rate,326

relative density (density divided by annual growth λY ), ampmax and attmax over two years. Seasonal temperatures327

were modelled as Tt = v+w cos
(
t 2π

365

)
, where v andw were set such that min(Tt) = 15◦C and max(Tt) = 25◦C,328
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with t = 0 the coldest day of the year. The initial population was set to the stable distribution associated with329

15◦C. The amplitude of annual oscillations in λ1 and relative density were greater for CLM than IPLM (Fig.330

6). Trajectories of ampmax and attmax were more complex for IPLM and exhibited spring-time oscillations in the331

first year that were damped in the second year. This damping suggests that spring-time flux in the stable stage332

distribution was mild. Raising max(Tt) to 30◦ reduced both precision in λ1 and the probability of λ1 > 1 in333

mid-summer (Fig. 6). This possibility of negative summertime growth arose from uncertainty in adult survival at334

30◦C.335

These analyses suggest that, for the chosen temperature profile, the importance of transient dynamics relative336

to asymptotic dynamics is small. Despite vital rates responding differentially to temperature, the perturbations337

generated by the chosen temperature profile only generate low-amplitude transient oscillations. The amplitude338

of transient oscillations is expected to increase as winter-summer, or day-to-day, temperature differences increase339

since cold winters exert strong differential mortality. Temperature transfer experiments (Régnière et al., 2012)340

could help test this hypothesis.341

5 Discussion342

Integral projection Lefkovitch matrices (IPLMs) are a new tool for modelling the dynamics of stage-structured343

populations. They augment classic Lefkovitch matrices (CLMs) by modelling within-stage dynamics with integral344

projection models (IPMs). By doing so, stage-specific vital rates, and related metrics, can be parameterised with345

time-varying covariates to yield more realistic sojourn-mortality distributions. Moreover, IPLMs can provide valid346

transition probabilities when stage distributions are non-stable, reduce errors in transient or non-linear dynamics347

and can therefore improve predictive performance when exogenous factors differentially affect vital rates.348

The kernel of any IPM-based model must synthesise the net effects of interacting endogenous and exogenous349

processes on vital rates. We have shown that maturation-time data provides an alternative to dynamic trait data350

for fitting IPM-kernels. This enables IPM parameterisation even when measuring within-stage development is351

unfeasible or impracticable.352

Trait heterogeneity is fundamental to eco-evolutionary models, and static traits, such as quality, are often used353

to condition vital rates (Vindenes and Langangen, 2015). Yet, ecologists lack tools for tracking many important354

traits in natural populations (De Valpine et al., 2014). We have shown how unmeasured individual traits can355

condition IPLM kernels to model correlated stage-durations. Although we call these individual traits quality,356
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these parameters can be interpreted to provide: group-level random effect when modelling laboratory data; spatial357

random effects conditioning phenotypic responses of sub-populations to unmeasured local factors; a synthetic358

index of genotypic traits that affect vital rates and fitness in eco-evolutionary models.359

In our Culicoides analyses, neglecting within-stage heterogeneity generated a small systematic bias favouring360

over-estimation of growth rates and the probability of λ1 > 1. Thus, neglecting within-stage heterogeneity361

can apparently affect predictions of potential ecological niche. It is increasingly recognised that perturbations362

and transient dynamics can be as important as asymptotic dynamics (Stott et al., 2011). The CLM model363

underestimated the duration and amplitude of transient oscillations, the potential range of relative densities (attmax,364

ampmax) and associated inertias. Whereas this model yields just one pair of complex eigenvalues, the larger365

IPLM yields many more complex eigenvalues giving a richer characterisation of the transient oscillations that366

follow perturbation. These effects can have important consequences in wildlife management and other branches367

of ecology and evolution where perturbations limit the forecasting horizon of current methods.368

Our Culicoides study represents the first time an IPM has been used to analyse temperature effects on within-369

stage development, transient dynamics and phenology for a poikilothermic Ecdysozoa. Although tracking within-370

stage development with temperature-dependent IPMs is analogous to tracking degree-day accumulation, IPMs and371

degree-day accumulation models have hitherto evolved in relative isolation. The use of IPLMs in the Culicoides372

study bridges a historic gap between these schools of ecological modelling, overcomes many of the limitations of373

the pioneering work of Dennis et al. (1986), and avoids popular, but unrealistic, linearity assumptions by readily374

accommodating non-linear responses to temperature. We modelled these responses at unmeasured temperatures375

using biologically justified unimodal spline interpolation. Alternatively, mechanistic link functions (Régnière et al.,376

2012; Smallegange et al., 2016) could have been used to obtain smoother development–temperature response377

curves. However, our non-parameteric approach provided greater parsimony in the Culicoides study. The model’s378

relative simplicity, and ability to exploit maturation-time data, suggest that IPLM provides a valuable tool for379

modelling the dynamics of many stage-structured populations.380

Discretisation unavoidably introduces resolution parameters r. Simulation results suggested that, provided r381

is large enough, model fit can be relatively insensitive to r. By contrast, the Culicoides study showed that the382

degree of sensitivity of likelihoods to r is data dependent. Indeed, at low values, r functions as a shape parameter,383

suggesting that more flexible kernels should reduce sensitivity to r. Modelling development rate heterogeneity384

with beta distributions allowed us to demonstrate how the likelihoods of CLMs are greatly increased with just a385

few additional parameters. But, we do not expect this distribution to be optimal in all situations. Further research is386
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required to test alternatives, such as probability distributions with more parameters or semi-parameteric methods.387

Future research should address how parameter estimation could exploit alternative data sources. For example,388

could time series data from field studies reduce parameter uncertainty beyond the range of experimental conditions?389

This is challenging because such data can reflect overlapping generations and parts of a life cycle can be hidden.390

Bayesian data augmentation, where laboratory data informs the imputation of missing field data, can provide a391

powerful tool. However, the problem of calibrating population models to time series data lies at the cutting edge392

of statistical ecology (Andrieu et al., 2010; Wood, 2010; Scranton et al., 2014). Since, generic methods for fitting393

IPLM models to such data would provide a major step towards improving the forecasts of matrix models, we394

strongly encourage further research in that direction.395

6 Conclusion396

We have presented a new matrix model for stage-structured populations with non-stable stage distributions.397

A CLM is augmented with stage-specific IPMs that track within-stage development, permitting parsimonious398

parameterisation, even with time-varying covariates. The IPM-kernels are estimated from maturation-time data,399

enabling IPM methods to be used in many scenarios that were not previously possible. The resulting model is400

simple, reduces projection error, can be analysed using the powerful matrix model toolbox, and is expected to401

improve the forecast horizon of stage-structured models in many branches of ecology and evolution.402
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8 Figures549

Figure 1. A basic integral projection model (IPM) for within-stage dynamics. The stage-specific IPM-kernel KΘ

is defined as the product of survival probability ν and a probability density function (PDF) for development
increments ∆. Here, ν = 0.97 and the PDF is Beta(α1 = 5, α2 = 50) (a). A population, initialised (t = 0) in the
first sub-stage, is projected forward through a series of (r = 50) discrete developmental increments (b). The
accumulation of density in the final sub-stage, and the loss of density over all sub-stages, generates the
probabilities to complete the stage, or die, per time-step. The cumulative probabilities are shown with the interval
t = 0 to t = 12 coloured orange (c). Dashed lines (c) correspond to the developmental distributions (b) at t = 0,
t = 4 and t = 12.
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Figure 2. Estimated (y-axes) vs. true (x-axes) mean (µ̃), standard deviation (σ̃) and total survival probability (ν̃)
of sojourn-mortality distributions from 500 simulations of a two-stage quality-conditioned IPLM model with
N = 50 individuals. For each simulation, the median (green) and upper (red) and lower (blue) CI95 bounds of the
posterior distribution are presented. The one-one (dashed) line is shown for reference. The number of outliers
where CI95s failed to envelope the true parameters were: 25 (µ̃1), 32 (µ̃2), 20 (σ̃1), 29 (σ̃2), 20 (ν̃1) and 28 (ν̃2).
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Figure 3. Posterior log-likelihood profiles w.r.t. resolution (top) and the distribution of estimates for each
resolution (bottom) for an egg, larvae, pupae and adult IPLM model fitted to Culicoides biting midge data.
Boxplots (top left) summarise the distribution of posterior log-likelihoods and the wireplot (right) shows mean
posterior log-likelihoods (MPLL) calculated from 104 MCMC samples per resolution or combination.
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Figure 4. Non-linear responses to temperature of development (top) and survival (bottom) at most likely
resolutions (rMAP

E = 6, rMAP
L = 9, rMAP

P = 31, rMAP
A = 8) for egg, larvae, pupae and adult midges. Results

from 1000 MCMC samples are plotted with unimodal spline interpolation. Experimental temperatures are
indicated (dashed vertical lines). Red and blue lines show median and 1% tail percentiles (P01,P99) of
development kernel f(∆|θ) (top row). Expected values (black line) and CI95s for each parameter are shown
(dashed lines).
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Figure 5. Indices of transient dynamics for Culicoides CLM and IPLM models at fixed temperatures. Geometric
projections of inverted damping ratios (ρ = λ1/|λ2|) from 1000 MCMC samples (red lines), their means (black
line) and CI95s (dashed lines). Projected trajectories of relative densities (blue lines, third and forth rows), with
initial values set to the 10◦C stable stage distribution. Maximum amplification, maximum attenuation (upper and
lower red lines respectively) and associated inertias (green lines) are shown.
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Figure 6. Growth rate (λ1) and standardised density projections from Culicoides CLM (left) and IPLM (right)
models forced with annual temperature fluctuations with ranges 15◦C-25◦C (top) and 15◦C-30◦C (bottom).
Relative density projections were initialised at the 15◦C stable stage distribution and standardised using annual
growth λY (blue lines). Maximum amplification and maximum attenuation trajectories (upper and lower red
lines) are shown. Results from 1000 MCMC samples are presented.
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SUPPORTING INFORMATION

Lefkovitch matrices meet integral projection models: quantifying the
effects of individual heterogeneity in hidden developmental processes
María Soledad Castaño, Perry de Valpine, Hélène Guis and David R.J. Pleydell.

S1 Discretising integral projection models

The main text describes an integral projection model (IPM) for characterising the dynamics of within-stage

development δ (eqn 3). In this model, an individual’s developmental status δ progresses via increments ∆ = δ′− δ

with PDF f(∆|θ), CDF F (∆|θ) and parameters θ. For parsimony, we assume both f(∆|θ) and survival ν

are independent of δ. The IPM-kernel is therefore KΘ(∆) = νf(∆|θ), where the PDF f(∆|θ) accounts for

developmental rate heterogeneity. Throughout this work, we assume f(∆|θ) is the PDF of a beta distribution with

mean µ and variance κµ(1− µ). The full parameter set for a given stage is Θ = {ν, θ} = {ν, µ, κ}.

A matrix approximation of this IPM for within-stage development is obtained by discretising the within-stage

developmental status δ into r equally sized sub-stages. We assume individuals always start a new stage in the first

sub-stage and develop by increments of up to r sub-stages each time-step. Within-stage transition probabilities for

discrete developmental increments of l sub-stages are given by

pl =

l+1
r+1∫

l
r+1

f(∆|θ)d∆, (1)

where pr = 1−∑r−1
l=0 pl gives the probability to complete the entire stage in just one time-step. These probabilities

are used to define the projection matrix WS for each stage S (eqn 4 in main text). The full parameter set for a

given stage in this discretised IPM-approximation is {ν, µ, κ, r}.

S2 Quality-dependent development with Gaussian copulas

Copulas are tools for generating multivariate distributions from an arbitrary set of marginal distributions (Kruskal,

1958; Nelsen, 2006). In the simulation-estimation study, Gaussian copulas were used to model correlation between

individual quality q and development increments ∆. Here, we outline the details required to condition development
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kernels on individual quality. We assume q is fixed through an individual’s lifespan and conditions the distribution

of increments at each time-step.

Marginal distributions of both ∆ and q were described by beta distributions with densities

f
∆

(∆|α1, α2) =
∆α1−1(1−∆)α2−1

B(α1, α2)
, (2)

fq(q|ξ1, ξ2) =
qξ1−1(1− q)ξ2−1

B(ξ1, ξ2)
, (3)

and with corresponding cumulative distribution functions Fq and F
∆

. A standard uniform distribution is obtained

for q by setting ξ1 = ξ2 = 1. Correlation between ∆ and q was established via random variables x
∆

and xq , which

have a bi-variate Gaussian density with correlation coefficient ρ and standard normal marginal densities φ(·) with

distribution functions Φ(·). These variables are linked via the following probability integral transformations:

Fq(q) = uq = Φ(xq), (4)

F
∆

(∆) = u
∆

= Φ(x
∆

), (5)

where uq and u∆ follow standard uniform distributions. The joint density of ∆ and q was therefore

f∆,q(∆, q|α1, α2, ξ1, ξ2, ρ) = fx∆,xq (x∆, xq|α1, α2, ξ1, ξ2, ρ)

∣∣∣∣∣∣∣

∂∆
∂x∆

∂∆
∂xq

∂q
∂x∆

∂q
∂xq

∣∣∣∣∣∣∣

−1

, (6)

where fx∆,xq
(·, ·|α1, α2, ξ1, ξ2, ρ) is the bi-variate normal density with correlation parameter ρ and the Jacobian

determinant provides a change of variables correction for the transformations.

The above specification gives the following conditional density of ∆ given q:

f∆|q(∆|α1, α2, q, ρ) =
fx∆|xq

(x∆|α1, α2, xq, ρ)f∆(∆)

φ(x∆)
, (7)

where fx∆|xq
(x∆|α1, α2, xq, ρ) is normal with mean µ

∆
= ρxq and variance σ2

∆
= 1 − ρ2. The corresponding

conditional distribution function is given by the identity

F∆|q(∆|α1, α2, q, ρ) =

∫ ∆

0

f∆|q(y|α1, α2, q, ρ)dy =

∫ x∆

−∞
fx∆|xq

(z|α1, α2, xq, ρ)dz = Fx∆|xq
(x∆|α1, α2, xq, ρ).

(8)
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S3 Generating in silico data

For each of the five hundred simulations, in silico data for two successive stages was generated as follows. Sample

size was fixed as N = 50 individuals and the duration of the maturation experiment was set to tc = 21 time

steps. For each simulation, parameters were sampled and data were simulated using a rejection sampler (algorithm

S3.1) that ran until the following constraints were satisfied: 1) all parameters α1 and α2 for the development rate

distributions F
∆

of each stage were greater than one, and 2) daily survival parameters {ν1, ν2} were sufficiently

large that the number of individuals completing both stages (nd2 , see below) was at least Nmin
d2

. Throughout we

used Nmin
d2

= 35. Qualities {qi}i=Ni=1 , correlation coefficient ρ and initial parameters {µ1, µ2, κ1, κ2, ν1, ν2} were

initialised with draws from a standard uniform distribution. These parameters were rejected and resampled if, for

either stage, the alternative parameterisation α1 = µ (1−κ)
κ and α2 = (1− µ) (1−κ)

κ yielded α1 ≤ 1 or α2 ≤ 1.

Following each simulation (main text, section 3, subsection "Simulation"), the number of individuals that got

censored (nc1 , nc2 ), died (nm1 , nm2 ) or developed (nd1 , nd2 ) in each stage was recorded. If nd2 < Nmin
d2

and

nc1 + nc2 > nm1
+ nm2

, all parameters were resampled from their priors. Otherwise, if nd2
< Nmin

d2
and

nc1 +nc2 ≤ nm1
+nm2

, the lowest of the two survival probabilities was resampled from a uniform prior truncated

at the current value of ν. The rejection sampler was stopped once nd2 ≥ Nmin
d2

(see Algorithm S3.1).

S4 IPLM generated sojourn-mortality probabilities

In the IPLM approach, the fate of every individual in a given stage can be described by two pieces of information:

1) the time-to-event, yA ∈ {1, . . . , tc} (where tc is the time beyond which data are right censored); and 2) the

event-type, yB ∈ {stage completion, mortality, censored}. Probabilities associated with combinations of these

two pieces of information can be obtained as follows. Given stage-specific parameters {µ, κ, ν, r}, construct the

IPM-approximation (eqn 5, main text). Project the unit density pulse vector (nT , c
S
)0 = (1, 0, . . . , 0)T and, for

each time-step t ∈ {0, . . . , tc}, record the probabilities to complete a stage, pd(t), or die, pm(t). The probability

of right censor beyond tc is pc = 1−∑tc

t=1

(
pd(t) + pm(t)

)
.

Mean and variance of sojourn-time distribution The probabilities pd, pm and pc define the right censored

sojourn-mortality time distribution for individuals in a given stage. These probabilities provide the basis for

calculating the likelihood of IPLM parameters given the observed data. The mean and variance of the sojourn
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Algorithm S3.1: DATA SIMULATION WITH CONSTRAINTS (inputs=N,Nmin
d2

)

comment: Initialise all parameters.

{µ1, µ2, κ1, κ2, ν1, ν2, q1, . . . , qN , ρ} ∼ Uniform(0, 1)
comment: Determine alternative parameters.

{µ1, κ1} → {α11, α12}
{µ2, κ2} → {α21, α22}
comment: Simulate cohort data nc1 , nc2 , nm1

, nm2
, nd2

while nd2 < Nmin
d2

or min{α11, α12, α21, α22} < 1

do





comment: Use rejection until constraints are satisfied.

if (nc1 + nc2 > nm1 + nm2) or min{α11, α12, α21, α22} < 1

do





{µ1, µ2, κ1, κ2, ν1, ν2, ρ, q1, . . . , qN} ∼ Uniform(0, 1)
{µ1, κ1} → {α11, α12}
{µ2, κ2} → {α21, α22}
Simulate cohort data

else if (nc1 + nc2 6 (nm1
+ nm2

)

do





comment: Stepping-in avoids high rejection rates.

if ν1 = min{ν1, ν2}
do ν1 ∼ Uniform(ν1, 1)
else
do ν2 ∼ Uniform(ν2, 1)

Simulate cohort data
return (nc1 , nc2 , nm1

, nm2
, nd2

, µ1, µ2, κ1, κ2, ν1, ν2, α11, α12, α21, α22, q1, . . . , qN , ρ)
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time distribution can be calculated as

µ̃ = lim
tc→∞

∑tc
t=1 tpd(t)∑tc
t=1 pd(t)

(9)

and

σ̃2 = lim
tc→∞

∑tc
t=1(t− µ̃)2pd(t)∑tc

t=1 pd(t)
. (10)

In practice, these quantities are approximated by setting tc large enough that pc become negligibly small.

S5 Culicoides life cycle data

Laboratory data from two Culicoides species were used to parameterise development, survival and fecundity for

a complete life cycle. Note, these species share similar developmental responses across the 15◦C-35◦C range

(Purse et al., 2015). Our own insectarium (ASTRE, Montpellier) provided individual-level data on gonotrophic

cycle durations, number of gonotrophic cycles and number of eggs laid for C. nubeculosus females at 15◦C, 20◦C

and 25◦C (Balenghien et al., 2016). The laboratory also provided egg maturation and survival data at 15◦C. Two

similar C. variipennis studies (Mullens and Rutz, 1983; Vaughan and Turner, 1987) provided maturation time data

for immature stages (egg, larva and pupa) – these data were available either as individual-level maturation times

or summary statistics (sample means and standard deviations). The study of Vaughan and Turner (1987) provided

developmental data at 20◦, 23◦, 27◦, 30◦and 35◦C whilst that of Mullens and Rutz (1983) provided developmental

data at 17◦, 20◦, 23◦, 27◦, 30◦and 35◦C. In the latter case, published data were complimented with original notes

from the author’s lab-book which gave initial sample sizes and individual-level data for pupal and composite larval-

pupal stage studies. Published larvae-only data from both studies were not used due to ambiguity regarding sample

sizes. The likelihoods functions used to analyse data type are given in section S6.

S6 Likelihood functions

Likelihood in case study I. When data is available at the individual-level (i.e. for each observation the total

number of counts in one), the probabilities pd, pm and pc can be plugged into a categorical likelihood function, as

described in case study I (main text).
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DEVELOPMENT, SURVIVAL & FECUNDITY DATA

Temp
C. nubeculosus C.variipennis

Balenghien et al.
(2016)

Mullens et al.
(1983)

Vaughan et al.
(1987)

gonotrophic
cycle egg fecundity egg larva & pupa pupa egg pupa

15 1k 1c 3
17 2u† 1c 2u
20 1k 3 2u† 1c 2u 2p† 2p†

23 2u† 1c 2u 2p† 2p†

25 1k 3
27 2u† 1c 2u 2p† 2p†

30 2u† 1c 2u 2p† 2p†

35 2p† 2p†

Table S1. Available laboratory data for estimating Culicoides life cycle parameters. Data sets marked “1” provide sojourn time frequency
distributions with “k” indicating that mortality date frequency distributions are known and “c” indicating clumping of mortality and right
censored data. Data sets marked “2” provide the mean & standard deviation of observed sojourn times with “p” indicating the proportion

surviving at each temperature is known and “u” indicating survival related information was unreported. The data set marked “3” provides the
number of eggs laid per female in the gonotrophic cycle study. The notation † indicates missing sample size data requiring imputation steps
described in section S7.

S6.1 Likelihood functions for the Culicoides study

For every column of table S1, data at different temperature are assumed to be independent. Thus, for a given stage

and data set, eqn 9 in the main text is

f
(
µ1, . . . , µK , κk, . . . , κK , ν1 . . . νK , r|y

)
∝

K∏

k=1

f
(
yk|µk, κk, νk, r

)
f(µk, κk, νk, r), (11)

where y = {y1, . . . , yK} and yk is data collected at the kth temperature. The Bayesian framework easily permits

to extend expression (11) for the cases where models were fitted using multiple data sources – they are assumed

independent each other.

Details of the various expressions used for the likelihood function f(yk|µk, κk, νk, r), which depend on the

statistical information provided in data y = {y1, . . . , yK} (see table S1), are presented below. The following

expressions for each data type are valid at every empirical temperature and implicitly dependent of r , thus r and

subscripts k are dropped for brevity.

Modelling sojourn-mortality time frequency data. Where data provide counts for the number of individuals

that can be associated with pd(t), pm(t) or pc at each time step, then a multinomial likelihood function can be

defined. When such data is available at the individual-level – i.e. for each observation the total number of counts
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in one – then a categorical likelihood function can be used. This was the case for adult females in the Culicoides

study – note, data sets marked "1k" in table S1 provide the sojourn-mortality time frequency distribution for each

gonotrophic cycle of individual females. In that study, the sojourn-time frequency distribution was used to model

the time required to complete each gonotrophic cycle, where the completion of a gonotrophic cycle was indicated

by the completion of egg-laying.

The fate of each individual i in a given stage (or gonotrophic cycle) is described by time-to-event yiA ∈

{1, . . . , tc} and event-type yiB ∈ {development, mortality, censored} data. Each observation can therefore be

modelled by assuming

(yiA, yiB) ∼ Categorical
(
pd(1), pm(1), . . . , pd(tc), pm(tc), pc

)
. (12)

Sojourn time frequency data with clumped mortality – right-censor information. Sometimes it is difficult

or impossible to know precisely when mortality has occurred or even how many individuals have died prior to right

censor time tc. In such scenarios, the inability to distinguish dead from censored individuals requires clumping

of the probabilities pm(t) and pc to match the clumping of the associated data. Once data and probabilities are

correctly clumped, then the likelihood is derived following a similarly procedure to the previous case.

In the Culicoides study, data sets marked "1c" in table S1 provide sojourn time frequency distribution data

but do not distinguish the number of dead individuals from immature individuals still alive after tc. Let yt be the

number of individuals completing maturation in t days, let ymc be the number of dead or right censored individuals

and ytotal be the sample size. Likelihoods for such data are simply obtained by assuming

y1, . . . , ytc , ymc ∼ Multinomial
(
ytotal, pd(1), . . . , pd(tc), 1−

tc∑

t=1

pd(t)
)
, (13)

where probabilities pd(t) are obtained as described previously.

Likelihood for mean and standard deviation of sojourn times. Sometimes the only data available are

summary statistics, typically means and standard deviations, obtained from publications. In such cases, we need

the likelihood of the available summary statistics given the parameters.

For data sets marked "2u" and "2p" in table S1, data y consists of sojourn-time mean, µobs, and standard

deviation, σobs. Ideally the sample size N is available too. Assuming normality, the following likelihood can be
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written for this data:

f
(
µobs, σobs|µ, κ, ν

)
=

SPost
√

2πσ̃
exp

{
−σobs2 +

(
µobs − µ̃

)2

2σ̃2

}
, (14)

where {µ, κ, ν} are the model parameters, and µ̃ and σ̃ are moments of the joint sojourn-mortality time distribution

estimated from probabilities pd(t) (Appendix S4), calculated with tc high enough that pc falls below a precision

threshold and could be assumed negligible. Note, in equation (S14) above, µobs and σobs are not independent

of mortality ν. However, greater precision in mortality ν is possible when survival data are available too.

Sometimes, detailed survival data are not available, but the number, or proportion, of individuals surviving until tc

is reported. Data sets marked "2p†" (in table S1) reported the proportion of individuals surviving each experimental

temperature, π, plus the total sample size at the start of each experiment, SPre
total. The proportions π were used in the

imputation of SPost (S7). The posterior likelihood of daily survival ν, given {µ, κ}, was given by the beta-binomial

model

f(ν|µ, κ, SPre, SPost) ∝ π̂SPost
(1− π̂)S

Pre−SPost
, (15)

where π̂ = 1−∑tc
t=1 pm(t).

S6.2 Bayesian model for expected fecundity per gonotrophic cycle

Fecundity data obtained from the gonotrophic cycle experiment (marked “3” in table S1) provided the number

of eggs laid at the end of each gonotrophic cycle. The posterior likelihood for the expected fecundity given this

data was obtained using the following approach. Expected fecundity at each temperature was estimated from

oviposition data using a Poisson model with Jeffrey’s prior, resulting in posterior distributions

FA(Tk) ∼ Gamma
(

shape =
1

2
+

NTk∑

i=1

niTk
, rate = NTk

)
(16)

where, at temperature Tk, NTk
is the number of observed ovipositions and niTk

is the fecundity of the ith

oviposition. As for survival and development, a unimodal constraint with respect to temperature was used to

facilitate unimodal spline interpolation (see section S10).
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S7 Imputation of missing data

Three of the data sets used for modeling the Culicoides life cycle presented missing sample size data (see table

S1). Bayesian imputation steps to account for associated uncertainties are described here.

Sample sizes at experimental temperatures Tk were typically reported in one of the two forms : the sample size

at the start of maturation experiment k, SPre
k , and the sample size at the end of a maturation experiment k, SPost

k . It

was assumed that any differences between SPre
k and SPost

k could be accounted for by mortality and right censoring.

In Vaughan et al.’s egg and pupae studies, the total sample size SPre
total was published, but how those numbers

were divided among the five experimental temperatures was missing data. Moreover, neither SPost
k or SPost

total

were published, although the proportion that survived each experiment, πk, was available. The duration of the

experiment was not published, curtailing the possibility to account for potential right censor. It was assumed a

priori that the expected sample sizes in each of the nT experimental temperatures were equivalent. Dropping the

k notation for brevity, this gave the following prior for each experimental group,

SPre
1 , . . . , SPre

nT
∼ Multinomial

(
SPre

total,
1

nT
, . . . ,

1

nT

)
. (17)

The proportions πk that survived at each experimental temperature Tk permitted imputed values for SPost
k to be

determined as

SPost
k = πkS

Pre
k . (18)

In the Mullens and Rutz egg data, a total sample size at the end of the maturation experiment was reported, but

how those sample sizes were distributed among the different temperature groups was not reported. However, those

authors did note in their paper that those values were roughly equivalent. Thus, we adopted the following prior

SPost
1 , . . . , SPost

nT
∼ Multinomial

(
SPost

total,
1

nT
, . . . ,

1

nT

)
. (19)

S8 Posteriors for the Culicoides study

For stages S = {egg, adult}, posterior densities of parameters at each experimental temperature were of the form

f(µ
S
, κ

S
, ν

S
, r

S
, ŷ

S
|y

S
) ∝ f(y

S
|µ

S
, κ

S
, ν

S
, r

S
, ŷ

S
)fU (µ

S
, κ

S
)fU (ν

S
)f(r

S
)f(ŷ

S
), (20)
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where y
S

represents the full set of data, from different various sources, for stage S at a given empirical temperature,

U indicates the unimodality constraints, and ŷ
S

represents imputed missing data. Recall, unimodal constraint U

includes: 1) unimodal response of parameters ν, P01 and P99 to temperature, and 2) unimodality in f(∆|α1, α2),

which is ensured when both α1 and α2 are greater than one. Posterior densities for larvae and pupae parameters

per experimental temperature were

f(µL, µP , κL, κP , νL, νP , rL , rP , ŷP |yP ,yLP ) ∝fU (µL, κL)fU (νL)f(r
L

)fU (µP , κP )fU (νP )f(r
P

)f(ŷP )

× f(yP |µP , κP , νP , rP , ŷP )

× f(yLP |µL, κL, νL, µP , κP , νP , rL , rP ). (21)

Likelihoods for data yE , yP and yA were calculated from sojourn-mortality distributions obtained by projecting

the unit pulse vector (nT , c
S
)0 = (1, 0, . . . , 0)T with eqn 5, main text). The likelihood for yLP was calculated

similarly using the following two-stage projection matrix for the IPM-approximation:

MLP =




WL 0 0

BL WP 0

0 B1
P 1



. (22)

S9 MCMC strategy

Parameters µ, κ and ν are bounded on (0, 1). We adopted the strategy of transforming these parameters to the logit

scale to enable sampling on unbounded domains. Thus, we sampled the logit transformed parameters

µ′ = log
( µ

1− µ
)
, (23)

κ′ = log
( κ

1− κ
)
, (24)

ν′ = log
( ν

1− ν
)
. (25)
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A simple change of variables correction reveals the prior densities of these transformed parameters to be

f(µ′) =
1

(1 + eµ′)(1 + e−µ′)
, (26)

f(κ′) =
1

(1 + eκ′)(1 + e−κ′)
, (27)

f(ν′) =
1

(1 + eν′)(1 + e−ν′)
. (28)

In the Culicoides study, target posteriors distributions were sampled using a parallel tempering algorithm

(Swendsen and Wang, 1986; Liu, 2008; Łącki and Miasojedow, 2015) adapted from NIMBLE’s library of functions

for adaptive MCMC. Tempering was not applied to the transformed priors in equations (26-28) since the prior

on the original scale is already flat, neither was tempering applied during the imputation steps. Depending on

the analysis, the tempering was performed with temperature ladders of 10 to 15 different temperatures (nTemps).

Temperature ladders were initialised as T = elog(0×10), elog(1×10), . . . , elog(nTemps×10) and were adjusted to target

a 0.234 acceptance rate using techniques described in (Łącki and Miasojedow, 2015) during an adaptive burn-in

phase.

A burn-in period, consisting of a series of runs of 104 iterations (103 in the simulation-estimation study), was

iterated until LP run < 2 +LP run−1, where LP run is the mean log posterior density of the model over a given short

run. Expected sample size (ESS) (Plummer et al., 2006) was calculated for each parameter from the final pre-run.

Thinning was set to 2 × min(ESS), to remove much of the auto-correlation from subsequent samples. Thereafter,

104 thinned post-adaption MCMC samples were generated per model and convergence diagnostics were performed

using CODA.

To avoid mixing difficulties in the Culicoides study, the above sampling strategy was applied with resolution

parameters fixed at values (or combinations of values for larvae-pupae) given by rE , rP , rA ∈ {1, ..., 50} and

rL ∈ {1, ..., 15}. Integration over each rS ∈ {rE , rA} was achieved in a post-MCMC step by sampling among

lines of model output with weights

wl(rS) =
fl(µ,κ, s, ŷ|y, rS)∑50
r′S=1 fl(µ,κ, s, ŷ|y, r′S)

, (29)

where l ∈ {1, ..., 104} indicates the MCMC output line. For the larvae-pupae analysis, equation (29) was adjusted
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to include integration over both rL and rP such that

wl(rL, rP ) =
fl(µ,κ, s, ŷ|y, rL, rP )∑15

r′L=1

∑50
r′P =1 fl(µ,κ, s, ŷ|y, r′L, r′P )

. (30)

These post-MCMC sampling steps generated a unique MCMC output file per stage and further CODA diagnostics

were performed on those outputs. NIMBLE and R scripts used in these analyses are available on github

https://github.com/scastano/IPLM_code.

S10 Unimodal cubic Hermite spline interpolation

Posterior estimates of logit(P01S), logit(P99S), logit(ν
S
) and log(FA) at unsampled temperatures were obtained

via interpolation with unimodal (i.e. up to two piece-wise monotonic) cubic Hermite splines. Recall, given n

points (xk, yk), where k ∈ {1, . . . , n} and xk < xk+1 for all k, a cubic Hermite spline between two successive

points is defined

finterpolated(t) = ykh00(t) + (xk+1 − xk)mkh10(t) + yk+1h01(t) + (xk+1 − xk)mk+1h11(t), (31)

where mk is the gradient at point k, t = x−xk

xk+1−xk
and hii are the cubic Hermite spline basis functions h00(t) =

(1 + 2t)(1− t)2, h10(t) = t(1− t)2, h01(t) = t2(3− 2t) and h11(t) = t2(t− 1). Equation (31) is available in R

as splinefunH in the stats package.

The Fritsch-Carlson method (Fritsch and Carlson, 1980) provides a deterministic algorithm for setting gradients

mk such that the fitted spline is piece-wise monotonic. Pseudo-code for a classic implementation of the Fritsch-

Carlson method is given in Algorithm S10.1.

We use a stochastic variation of the Fritsch-Carlson algorithm that permits uncertainty in gradients mk to be

explored within the piece-wise monotonic constraint α2
k + β2

k < 9. We assume throughout that the set of points

(x1, y1), . . . , (xn, yn) contains at most one local maximum – a condition used as a constraint during MCMC.

Moreover, we initialise each mk with a draw from the following unconstrained conditional (on y) priors,

arctan(mk) ∼





Uniform
(

arctan(∆k), arctan(∆k−1)
)

if yk−1 < yk and yk > yk+1, else

Uniform
(
0, arctan(3∆k−1)

)
if yk−1 < yk, else

Uniform
(

arctan(3∆k−1), 0
)

if k s.t. yk−1 > yk

(32)
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Algorithm S10.1: FRITSCH-CARLSON METHOD(x,y)

comment: Set slopes of secant lines

∆k = x−xk

xk+1−xk
∀ k ∈ {1, n− 1}

comment: Initialise tangents

m1 = ∆1 and mn = ∆n−1

for k ∈ {2, n− 1}

do





mk = ∆k−1+∆k

2
if sign(∆k−1) 6= sign(∆k)

then mk = 0
if ∆k = 0

then mk = mk+1 = 0
comment: Derive parameters α and β

αk = mk/∆k ∀ k ∈ {1, n− 1}
βk = mk+1/∆k ∀ k ∈ {1, n− 1}
comment: Reset gradients where monotonic constraint is violated

for any k s.t. α2
k + β2

k > 9

do




mk = 3αk∆k√

α2
k+β2

k

mk+1 = 3βk∆k√
α2

k+β2
k

where ∆0 = ∆1 and impose the constraint that α2
k + β2

k < 9, which truncates these priors, to avoid “overshoot”.

We use a stepping-in algorithm to re-sample arctan(mk) wherever the unimodality constraint is violated. Pseudo-

code for this sampling strategy is given in Algorithm S10.2.

Finally, for each stage S (suffix dropped for brevity), development kernel parameters α1 and α2 at any

temperatures T absent in the set of experimental temperatures for S were derived from interpolated values P01(T )

and P99(T ) by numerical minimisation. Thus, α1T and α2T were calculated as

α1T , α2T = arg minα1,α2

∑

p∈{1,99}

(
P̂p(α1, α2)− Pp(T )

)2

, (33)

where P̂p(α1, α2) was calculated with R function qbeta and minimisation was performed using the Nelder-Mead

algorithm of R function optim.
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Algorithm S10.2: STOCHASTIC UNIMODAL CUBIC SPLINE(x, y)

comment: Set slopes of secants and identify mode

∆k = x−xk

xk+1−xk
∀ k ∈ {1, n− 1} and kmax = arg maxk(yk)

comment: Initialise bounds and sample gradients

for k ← 1 to n

do





if k = kmax and k 6∈ {1, n} then Lk = ∆k and Uk = ∆k−1

else if yk < yk+1 then Lk = 0 and Uk = 3∆k−1

else if yk > yk+1 then Lk = 3∆k−1 and Uk = 0
arctan(mk) ∼ Uniform(arctan(Lk), arctan(Uk))

αk = mk/∆k and βk = mk+1/∆k ∀k ∈ 1, . . . , n− 1
while max{α2

k + β2
k : k ∈ 1, . . . , n− 1} > 9

do





κ = arg maxk(α2
k + β2

k)
if βκ > ακ then κ = κ+ 1
if κ = kmax and mκ < 0 then Lκ = mκ

else if κ = kmax and mκ > 0 then Uκ = mκ

else if κ < kmax then Uκ = mκ

else if κ > kmax then Lκ = mκ

arctan(mκ) ∼ Uniform(arctan(Lκ), arctan(Uκ))
αk = mk/∆k and βk = mk+1/∆k ∀k ∈ 1, . . . , n− 1

S11 Supplementary Figures

Figure S1. Estimated (y-axes) vs. true (x-axes) values for resolutions r1, r2 and correlation ρ parameters, and
frequency distribution of individuals completing both stages (bottom right), from 500 simulations with a
two-stage quality-conditioned IPLM model with a sample size of N = 50. For each simulation, the median
(green) and the upper (red) and lower (blue) bounds of the 95% credibility interval obtained from MCMC
sampling of the posterior distribution are shown. The one-one line (dashed) is shown for reference.
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Figure S2. Estimated individual qualities q̂ versus their corresponding true value q, from 500 simulations of a
two-stage quality-conditioned IPLM model with a sample size of N = 50. For each simulation, the median
(green) and the upper (red) and lower (blue) bounds of the 95% credibility interval obtained from MCMC
sampling of the posterior distribution are shown for five classes of individuals: died in stage 1; died in stage 2;
censored in stage 1; censored in stage 2; and completed both stages. The one-one line (dashed) is shown for
reference.
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Figure S3. Posterior cumulative distributions of within-stage sojourn times of a temperature-dependent IPLM
plotted with empirical Culicoides data (red lines). Where two data sets are shown, continuous red lines indicate
Mullens et al. data, and dashed red lines indicate Vaughan et al. data. The fitted sojourn time distributions
contrast markedly to those obtained with CLM (see Fig. S4)
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Figure S4. Posterior cumulative distributions of within-stage sojourn times of a temperature-dependent CLM
plotted with empirical Culicoides data (red lines). Where two data sets are shown, continuous red lines indicate
Mullens et al. data, and dashed red lines indicate Vaughan et al. data. The fitted sojourn time distributions
contrast markedly to those obtained with IPLM (see Fig. S3).
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Figure S5. Expected fecundity from a Poisson-Jeffreys model fitted to Culicoides oviposition data collected at
three temperatures (vertical grey lines). Posterior estimates from 1000 MCMC samples are shown with
extrapolation over the range 10◦ − 35◦C. The data suggest a non-linear response of fecundity to temperature.

Figure S6. Temperature responses of asymptotic growth rate (dominant eigenvalue, λ1) of CLM (left) and IPLM
(center). Expected growth rates were higher for CLM than for IPLM over much of the temperature range, and the
95% CIs for this difference excluded zero over a range of approximately 22◦C − 26◦C (right). Both models
predict population decline (λ1 < 1) at higher temperatures. However, CLM predicted λ1 > 1 over a greater range
of temperatures than IPLM. Expected values (black line) with 95% CIs (dashed lines) from 1000 MCMC samples
(red lines) are shown.
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Figure S7. Stable stage distributions at several temperatures for Culicoides CLM (left) and IPLM (right) models.
Results from 1000 MCMC samples (red lines) with posterior means and 95% CIs (black lines) are shown. For the
IPLM model, resolutions were set to their maximum a posteriori (MAP) estimates: rMAP

E = 6, rMAP
L = 9,

rMAP
P = 31 and rMAP

A = 8. Vertical lines separate stages.
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